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e address how to configure the supply chain for a new product for which the design has already been

decided. The central question is to determine what suppliers, parts, processes, and transportation modes
to select at each stage in the supply chain. There might be multiple options to supply a raw material, to
manufacture or assemble the product, and to transport the product to the customer. Each of these options is
differentiated by its lead time and direct cost added. Given these various choices along the supply chain, the
configuration problem is to select the options that minimize the total supply chain cost. We develop a dynamic
program with two state variables to solve the supply chain configuration problem for supply chains that are
modeled as spanning trees. We illustrate the problem and its solution with an industrial example. We use
the example to show the benefit from optimization relative to heuristics and to form hypotheses concerning
the structure of optimal supply chain configurations. We conduct a computational experiment to test these

hypotheses.
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1. Introduction

In this paper, we examine optimal configuration stra-
tegies for new product supply chains. Our intent is
to develop a decision-support tool that product man-
agers can use during the product development pro-
cess when the product’s design has been decided but
the vendors, manufacturing technologies, and ship-
ment options have not yet been determined. Our sup-
ply chain design framework considers three specific
costs that are relevant when configuring new supply
chains: cost of goods sold and the inventory hold-
ing costs for both safety stock and pipeline stock. The
supply chain configuration problem chooses a sourc-
ing option for each stage of the supply chain so as to
minimize the sum of these costs.

For most structured product development pro-
cesses, there is a milestone when the materials
management organization (MMO) sources the new
product’s supply chain. The product’s functionality
has already been determined at this point. There
are several available sourcing options at each stage.
Examples include multiple vendors to supply a raw
material, several manufacturers or technologies to
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manufacture or assemble the product, and numerous
transportation modes to deliver the finished product.

The role of the MMO is to identify the options that
can satisfy each function and then to decide which
options to select. Options differ in terms of their direct
costs and lead times. Therefore, choices in one portion
of the supply chain can affect the costs and respon-
siveness of the rest of the supply chain. The tradeoff
facing the MMO is whether to create a higher unit
manufacturing cost with a more responsive supply
chain versus a lower manufacturing cost with a less
responsive supply chain.

This problem integrates and builds upon ideas from
the research literature in the areas of multiechelon
inventory theory and network design.

From the literature on multiechelon inventory,
numerous papers address optimizing safety stock
placement across the supply chain, for example, Ettl
et al. (2000) and Graves and Willems (2000a). These
papers, and many of their cited references, optimize
safety stock levels for an established supply chain.
Because these models consider existing supply chains,
there is already one option chosen at each stage.
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Therefore, the cost of goods sold (COGS) is set, as is
the holding cost of the pipeline inventory, and these
costs do not enter into the analysis.

Inderfurth (1993) jointly considers the optimization
of safety stock costs and lead times for a single pro-
duction process producing multiple end items. The
optimization captures the impact that the finished
goods’ lead times have on the safety stock in the sup-
ply chain. However, the model only considers chang-
ing the configuration at one stage in the supply chain
and only considers safety stock costs.

Research on network design focuses on develop-
ing the optimal manufacturing and distribution net-
work for a company’s entire product line. Geoffrion
and Powers (1995) describe the evolution and pri-
mary assumptions in this field. These approaches gen-
erally formulate large-scale integer linear programs
that capture the relevant fixed and variable operating
costs for each facility; these variable costs go beyond
manufacturing costs to include tariffs and taxes. This
stream of research (for instance, Geoffrion and Graves
1974, Arntzen et al. 1995) differs from this paper in
its level of detail and scope. Network design focuses
on the design of two or three echelons in the supply
chain for multiple products; the supply chain config-
uration problem focuses on a single product family
at the supply chain level, allowing it to model all the
echelons in the supply chain and to explicitly capture
the impact of variability on the supply chain.

This paper is structured as follows. In §2, we
present the notation and assumptions. We formulate
in §3 the optimization problem and demonstrate how
to solve the problem by dynamic programming in §4.
In 85, we provide a case study showing the benefits
of optimizing the supply chain configuration versus
two heuristic approaches: choosing the cheapest unit
cost supply chain and choosing the most responsive
supply chain. We conclude this section with a set of
observations regarding the structure of optimal sup-
ply chain configurations, and in §6 present a design of
experiments to validate these observations. The con-
clusion and next steps are in §7.

2. Notation and Assumptions

The modeling framework follows that of Graves and
Willems (2000a). We will not repeat the discussion jus-
tifying the assumptions when they are the same as in
the earlier paper.

2.1. Option Definition

We model a supply chain as a network of stages,
where each stage represents a necessary function,
such as procurement, assembly, or transportation. For
each stage, one or more options exist that can satisfy
the stage’s functional requirement. For example, if a
stage represents the procurement of a metal housing,

then one option might be a locally based high-cost
provider and another option could be a low-cost inter-
national supplier. For each stage, we will select a sin-
gle option. We characterize an option at a stage by
its direct cost added and lead time. When a stage
reorders, the lead time is the time to perform the func-
tion at the stage, provided all the inputs are avail-
able; we assume that lead times are deterministic. An
option’s direct cost represents the direct material and
direct labor costs associated with the option. If the
option were the procurement of a raw material from
a vendor, then the direct cost is the purchase price
plus any transportation and labor costs to unpack and
inspect the product.

2.2. Periodic-Review Base-Stock
Replenishment Policy

We assume that each stage operates according to a
periodic review policy with a common review period.
Each period each stage observes demand either from
external customers or from its downstream stages,
and places an order on its suppliers to replenish the
observed demand. In effect, each stage operates with
a one-for-one or base-stock replenishment policy. We
assume no time delay in ordering so that in each
period all stages see the external customer demands.
We can extend the model to permit a determinis-
tic delay when passing the order information up the
supply chain. For determining the safety stocks, this
information delay is equivalent to increasing the pro-
duction lead time by the delay; however, the informa-
tion delay does not affect the pipeline stock.

2.3. Demand Process

We assume that external demand occurs only at nodes
that have no successors, which we term demand
nodes or stages. For each demand node j, we assume
that the end-item demand comes from a stationary
process, with average demand per period u;.

An internal stage has only internal customers or
successors; its demand in period t is the sum of the
orders placed by its immediate successors. Because
each stage orders according to a base-stock policy, the
demand at internal stage i is

di(t) = Z dj(t),
(i, j)eA
where d;(t) denotes the demand at stage j in period £,
A is the arc set for the network representation of the
supply chain. For each notation, and without loss of
generality, we assume that if there is an arc from i to
j, then one unit of i is required to produce one unit
of j. The average demand rate for stage i is

pi= ) Ky
(i, j)eA

We assume that demand at each stage j is bounded
by the function D;(7), where, for any period f and for
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any 7, we have O
Y yx=1 fori=1,2,...,N, 8)
Dir)=dj(t—7+1)+di(t —7+2)+---+d,(t). k=1
«€{0,1} fori=1,2,...,N,1<k=<0;, 9
We define D;(0) =0 and assume that D;(7) is increas- Yi €10, 1} for ©)
ing and concave.
where

2.4. Guaranteed Service Times

We assume that each stage j promises a guaranteed
outbound service time s{** by which the stage will
satisfy its demand, either from internal or external
customers. That is, the customer demand at time ¢,
d;(t), must be filled by time t + s, Furthermore, we
assume that stage j provides 100% service for the
specified service time: Stage j delivers exactly d;(t)
to the customer at time # + s7*". Demand nodes also
receive as input a maximum service time, S]-, which
will constrain the choice of sf**.

We assume that an internal stage i quotes the same
outbound service time, s, to all of its downstream
customers; Graves and Willems (2000a) describe how
to extend the model to permit customer-specific ser-
vice times.

We define s to be the inbound service time for
stage i. For stages with one or more upstream adjacent
stages, the inbound service time for stage i equals the
maximum of the service times quoted to stage i by
its suppliers. Thus, when stage i reorders, the time
to receive all the required inputs from the suppliers
is s;".

3. Optimization Model

We formulate the supply chain configuration problem
as an optimization problem for which the decision
variables are the options and the service times:

N
P min)_ |:aci [Di(si™ +t; —s9™) — (5" + t; — s s

i=1
Xi
+a <Ci - _> fip; + 5xiﬂzi|

2

such that
O;
S Tyyu—t=0 fori=1,2,...,N, 1)
k=1
O;
S Cayu—x,=0 fori=1,2,...,N, (2)
k=1

G- > ¢j—x;=0 fori=1,2,...,N, 3)
Ji(j, i)eA

Sh> s fori=1,2,...,N,j: (i) €A,  (4)
st —sM>0 fori=1,2,...,N, )
57" <S; for all demand nodes j, (6)

in

s, s >0 and integer fori=1,2,...,N, (7)

O; = number of candidate options at stage i,
C; = direct cost added of the kth option at stage i,
T;x = lead time of the kth option at stage i,

D;() = maximum demand function for stage i,

a = scalar representing the holding cost rate,

B = scalar converting the model’s underlying time
unit into the company’s time interval of
interest,

w; = mean demand rate at stage i,

¢; = cumulative cost at stage i,

t; = selected option’s lead time at stage i,

x; = selected option’s cost at stage i, and

Yix = indicator variable, which equals 1 if stage i’s
kth option is selected and 0 otherwise.

The objective function has three terms, each corre-
sponding to a component of the supply chain con-
figuration cost. The first term represents stage i’s
safety stock cost, which is a function of the stage’s
net replenishment time and demand characterization.
The holding cost at stage i equals the cumulative cost
of the product at stage i times the holding cost rate.
The second term expresses the pipeline stock cost as
the product of the holding cost rate, the average cost
of the product at the stage, and the expected amount
of pipeline stock. The third term, COGS, represents
the total cost of all the units that are delivered to cus-
tomers during a company-defined interval of time.
The incremental contribution to COGS is calculated
at each stage by a product of the average demand
at the stage, the option’s cost, and a scalar 8, which
expresses COGS in the same units as pipeline and
safety stock cost.

Constraints (1) and (2) define the cost and lead time
for each stage, as they depend on the option chosen.
Constraint (3) calculates the cumulative cost at each
stage. Constraints (4)—(7) assure that the service times
are feasible. In particular, the inbound service time at
every stage is at least as large as the largest outbound
service time quoted to the stage; the net replenish-
ment time of each stage is nonnegative; the outbound
service times to the customer must be no greater than
the user-defined maximums; and service times must
be nonnegative and integer. The last two constraints,
(8) and (9), enforce the sole sourcing of options.

We refer the reader to Willems (1999) for more
discussion and for details regarding the underly-
ing structure and formulation of the mathematical
program.
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4. Dynamic Programming

Formulation

In this section, we describe how to solve P by
dynamic programming when the underlying network
is a spanning tree. We solve P by decomposing the
problem into N stages, where N is the number of
nodes in the spanning tree and we can number the
nodes such that for each node i there is at most one
adjacent node with a label higher than i (see Graves
and Willems 2000a). We term the adjacent node with
a higher label to be the parent node, which we denote
by p(i) for node i; the parent can be upstream or
downstream of node i. Furthermore, we define N; to
be the subset of nodes {1,2, ..., i} that are connected
to 7 on the subgraph with node set {1,2,...,i}. We
can determine N; by the following equation:

N={i}+ U N+ U N.
h<i, (h,i)eA j<i, (i, j)eA

The dynamic program evaluates a functional equa-
tion for each node, proceeding sequentially from 1
to N. The solution at each node is the solution to P
for the subgraph N;. Intuitively, as the dynamic pro-
gram progresses through the network, it is creating a
series of solved subnetworks that grow and combine
until eventually the entire network is solved. After
each iteration, the current node’s parent is the only
node adjacent to the subnetwork that is unsolved.

We first formulate the functional equations for the
dynamic programming recursions and then present
the dynamic program.

4.1. Functional Equation Development

There are two forms of the functional equation,
depending on the node’s orientation in the network.
First, when the parent of node i is downstream from
node i, we define the function f;(c”, s°**) as the mini-
mum cost for the supply chain configuration in a sub-
network with node set N;, where the cumulative unit
cost at stage i is ¢’ and the outbound service time
is s°. Second, when the parent of node i is upstream
from node i, we define the function g;(c', s™) as the
minimum cost for the supply chain configuration in a
subnetwork with node set N;, where stage i’s parent
has a cumulative unit cost ¢! and quotes an outbound
service time of s™ to stage i.

To develop the functional equations, we first define
zy(s™, ¢!, c?, s°') as the supply chain cost for the sub-
network with node set N; when option k is selected
for stage i. z;() is a function of four arguments: s™ is
the inbound service time to stage i; ¢! is the cumu-
lative cost of the parent if the parent is upstream
of stage i; ¢® is the cumulative cost for all of the
other upstream adjacent stages; and s is stage i’s

outgoing service time.
Zjy (Sin, Cl, CZ, Sout)
— aCT[Di(Sin + T;'k _ Sout) _ (sin + T;'k _ Sout),ui]

G
+a(CT—7k>TikMi+BCikMi+ >
{j:(i, eA, j<i}

fulenr s™) } (10)

gj(CTr sout)

+  min { >
= L

R h, e, h<i}
where ¢T = ¢! + ¢* + C;. The first three terms corre-
spond to the safety stock cost, direct manufacturing
cost, and pipeline stock cost at stage i. These costs are
a function of the option selected at the stage, the ser-
vice times, and the total incoming cost to stage i. The
incoming cost to stage i is the sum of two quantities:
the parent’s cumulative cost and the cumulative cost
from all other upstream adjacent stages. These quan-
tities would be zero if there were no upstream stages.

The fourth term corresponds to the nodes in N; that
are downstream from node i. For each node j that is a
customer to node i, we include the minimum supply
chain cost at stage j as a function of stage i’s contribu-
tion to the cumulative cost at stage j and the service
time i quotes j.

The fifth term corresponds to the nodes in N;
that are upstream from i. This term consists of the
minimum supply chain cost for the configuration
upstream from stage i that is capable of producing
a cumulative cost c¢*. The incoming service time to
stage i (s™) is the maximum service time that is being
quoted to stage i. Therefore, s™ is an upper bound on
the outbound service time that each upstream stage
can quote.

We evaluate f;(c”,s") when the parent is down-
stream from the current node, as follows:

f;‘(CT/ Sout) — I]}lslll;} {Zik(sm/ 0, CT _ Cik/ Sout)}

st. max(0, s = Ty) <s" <M, — Ty,

1<k<0O;, s™>0and integer,
where M; is the maximum possible replenishment
time for node i, defined as M; = max{T, | k: 1 <k <
O;} + max{M, | h: (h, i) € A}. The lower bound on s
comes from P, and its upper bound is by the defini-
tion of M;. The minimization is over the feasible set of
options at the stage. By definition, f;(c”, s°") is solved
when (i, p(i)) € A. Therefore, the sum of the direct
costs from all upstream stages must equal ¢’ — C,
and c! is zero in the specification of z;().

When the parent is upstream from the current node,
we evaluate the functional equation, g;(c',s™), as
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follows:

g:(c',s™) = min

k, CZ, gout

{Zik(sin/ Cl, C2, Sout)}

st. 0<s™<s"4+T,,

1<k<0O;, s°>0and integer.
The range for ¢? is bounded and the bounds can easily
be established from the cost parameters in the net-
work. Because g;(c!, s™) is solved when (p(i), i) € A,
then ¢! and ¢® can both be nonzero. If node i is
a demand node, we have the additional constraint
that s°*t cannot exceed its maximum service time, i.e.,
s < S, Again, the minimization can be done by
enumeration.

4.2. Dynamic Program
The dynamic programming algorithm is now as
follows:

1. Fori:=1to N—1

la. If p(i) is downstream from i, evaluate
fi(cT, s for s =0,1,..., M, ¢’ € X;, where X; is
the set of feasible cumulative costs at stage i.

1b. If p(i) is upstream from i, evaluate g;(c', s™)
fors"=0,1,..., M, c' € X,;, where X, is the set of
feasible cumulative costs at stage i’s parent node.

2. For i:= N evaluate g;(0, s™) for s"=0,1, ..., M.

3. Minimize g¢y(0,s") for s = 0,1,..., My to
obtain the optimal objective function value. The opti-
mal set of service times and options are found by
the standard backtracking procedure for a dynamic
program.

The computational complexity of the algorithm is
of order kNNM?, where k is the maximum number of
options at any stage, N is the number of nodes, and
M is the maximum replenishment time in the net-
work, which is bounded by the sum of the longest
lead time at each stage. For each of the N nodes in
the network there are at most k™ functional equations
to evaluate over the entire range of inbound or out-
bound service times. We implemented the algorithm
in C4++ programming language. The run times for
real problems with 75-100 nodes and two options per
node are effectively instantaneous on a Pentium PC
with a 1.7 gigahertz Intel processor.

5. Application: Delayed Differentiation

in Computer Manufacturing
This section presents the results from a four-week
diagnostic exercise that was conducted at a Fortune
100 computer manufacturer.'

!The data in this section have been disguised to protect the
company’s proprietary information. The insights drawn from the
disguised data are the same insights that were drawn from the real
data.

5.1. Current Process Description

The company employs a target costing approach
(Ansari and Bell 1997) when designing new product
supply chains. In brief, the market price for the prod-
uct is set from outside the product design group. Two
common reasons for this are (1) that the product faces
many competitors and the firm will be a price taker
and (2) that another department within the company,
for example, marketing, specifies the product’s selling
price. Next, a gross margin for the product is spec-
ified, typically by senior management or corporate
finance. The combination of the prespecified selling
price and the gross margin target dictates the prod-
uct’s maximum unit cost.

The product’s unit manufacturing cost (UMC) is the
sum of the direct costs for the production of a single
unit of product. Typical costs include raw materials,
the processing cost at each stage, and transportation.
The maximum unit cost acts as an overall budget
for the product’s UMC.

From an organizational perspective, the supply
chain development core team is composed of an early
supply chain enabler and one or two representatives
associated with each of the product’s major subassem-
blies. The early supply chain enabler is responsible for
shepherding the product through the product devel-
opment process. This individual is brought in during
the early design phase and will stay with the project
until it achieves volume production.

The core team will allocate the UMC budget across
the major subassemblies. This is not an arbitrary pro-
cess. The team will rely on a number of factors,
including competitive analysis, past product history,
future cost estimates, and value engineering. Once the
subassembly budgets are set, the design teams for
each subassembly are charged with producing a sub-
assembly that can provide the functionality required
subject to its budget constraint. Even if these groups
incorporate multidisciplinary teams and concurrent
engineering, they will still operate within their own
budget constraints.

In much the same way that the UMC is allocated to
the subassemblies, each subassembly group allocates
its budget and decides what processes and compo-
nents to use. There are numerous factors to consider
when sourcing a component, some of which include
functionality, price, vendor delivery history, vendor
quality, and vendor flexibility. Because many of these
factors are difficult to quantify, the team establishes
a minimum threshold for each of the intangible fac-
tors. Suppliers that meet or exceed the thresholds are
considered as candidates or options.

The company’s current practice is essentially to
choose the lowest unit cost option from the set of
options that satisfy the intangible factors. In the
framework of the supply chain configuration prob-
lem, this corresponds to choosing the option with
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the lowest cost added at each stage, regardless of its
lead time. While this is admittedly a heuristic, there
are several reasons the company does this. First, as
mentioned earlier, all other factors besides cost are
difficult, if not impossible, to quantify. For example,
the company only wants to do business with suppli-
ers that have been certified. The certification process
involves a rigorous review of the supplier’s quality
practices, but given two certified suppliers, there is
no mechanism to view one supplier’s quality as supe-
rior to the other. Second, the UMC of the product will
dictate whether the business case to launch the prod-
uct is successful. If the UMC were not low enough to
meet the gross margin target, then the project will be
terminated. Therefore, there is tremendous pressure
to focus on the UMC at the expense of other con-
siderations. Finally, the team that designs the supply
chain is not the same team that has to manage the
supply chain. Although choosing parts with long lead
times might significantly increase the supply chain’s
inventory requirements, this dynamic has not been
explicitly considered during the new product’s busi-
ness case analysis.

5.2. Notebook Computer Case Study
A notebook computer consists of three major sub-
assemblies: the liquid crystal display (LCD), the cir-
cuit boards, and the housing. The LCD is a standard
component that is purchased from an external ven-
dor. The housing is a custom-designed product that
is also sourced from an external vendor.

To create the circuit boards, components are pur-
chased from external vendors and assembled by a

Figure 1 Notebook Computer Supply Chain

contract manufacturer. The assembly process involves
assembly of the components and quality testing and
creates a generic notebook computer. The generic
notebook is then customized with either a gray or
blue cover. The standard gray variant serves two dif-
ferent markets: U.S. demand and export demand. The
blue variant is a new introduction for the U.S. market.

A graphic depiction of the supply chain is shown
in Figure 1.

The circuit board assembly is depicted at the top
left of the figure. The components for the circuit
board are grouped according to their traditional pro-
curement lead times. The LCD display and metal
housing are procured from outside suppliers. The
battery is included separately from the other miscel-
laneous components because it is an expensive acces-
sory with an especially long procurement lead time.
After assembly, the generic notebook is customized
with either a blue or gray cover and shipped to the
appropriate demand location.

Table 1 contains the options available when sourc-
ing this supply chain. The company operates on a
five-day work week and there are 250 work days in
the year. The annual holding cost rate is 45%.

For each stage, option 1 reflects the option that was
chosen for the existing supply chain. The additional
options were judged by the materials management
group to be alternatives that were feasible options
that were not selected.

For the circuit board’s raw materials, the different
options refer to different classes of service that the
distributor is willing to provide. The head of mate-
rials management for the electronics subassembly
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Table 1 Options for Notebook Computer
Component/process description ~ Option  Lead time  Cost added ($)
Parts w/ eight-week lead time 1 40 130.00
2 20 133.25
3 10 134.91
4 0 136.59
Parts w/ four-week lead time 1 20 200.00
2 10 202.50
3 0 205.03
Parts w/two-week lead time 1 10 155.00
2 0 156.93
Parts on consignment 1 0 200.00
Circuit board assembly 1 20 120.00
2 5 150.00
LCD display 1 60 300.00
2 5 350.00
Miscellaneous components 1 30 200.00
Metal housing 1 70 225.00
2 30 240.00
Battery 1 60 40.00
2 20 45.00
Notebook assembly 1 5 120.00
2 2 132.00
Gray cover 1 40 5.00
2 15 5.50
Blue cover 1 40 5.00
2 15 5.50
Gray assembly 1 1 30.00
Blue assembly 1 1 30.00
U.S. demand—gray 1 5 12.00
2 1 20.00
Export demand—gray 1 15 15.00
2 2 30.00
U.S. demand—blue 1 5 12.00
2 1 20.00

Notes. The example presented here is a slight simplification of the actual
diagnostic project. The original diagnostic modeled a 34-stage supply chain
with 72 options. The main sources of simplification are the modeling of
only two end items versus five end items and the merging of multiple mis-
cellaneous components into a single stage; merged stages include cables,
disk drive, and keyboard. The simplification does not change the underlying
results, nor does it change the recommendations made.

estimated that converting an eight-week lead time
part to a consignment part would increase the pur-
chase price by 5%. We used this information to esti-
mate the cost of reducing one week of lead time for
each electronic part as 0.625% of the part’s selling
price. In effect, the increase in cost represents the cost
incurred by the distributor to inventory the part.

For other components like the metal housing, LCD
display, covers, and battery, the costs reflect either dif-
ferent providers or different terms from the same ven-
dor; these contract terms were specified in the request
for quotation (RFQ) process.

As a rule of thumb, the company valued one hour
of processing time at $60. Recall that the definition of
lead time includes the waiting time at a stage plus the

actual processing time at the stage. Therefore, a slight
increase in the available capacity at a stage can dra-
matically reduce the stage’s lead time. For example,
by adding $30 to the cost of circuit board assembly,
the lead time was reduced from 20 days to 5 days;
the additional half hour of labor time reflects the ded-
ication of a production line to the product. A similar
analysis was performed for notebook assembly.

The three demand stages represent the delivery of
product to the company’s retailers. The maximum ser-
vice time for each of the demand stages equals zero.
That is, they must provide immediate service to exter-
nal customers. In the case of U.S. demand, the product
can either be shipped by ground transportation at a
cost of $12 and a transportation time of five days or it
can be shipped by air at a cost of $20 with a one-day
transportation time. Export demand can be satisfied
in a similar manner, albeit with different costs and
transportation times.

The current notebook is an improvement of an
existing version. Therefore, the company used the
previous product’s sales and market forecasts when
determining the demand requirements for the supply
chain. At each demand stage, the demand bound was
estimated as

Dy(1) = +ko VT,

where u and o refer to the stage’s mean and standard
deviation of demand and the constant k was chosen to
equal 1.645. The daily demand parameters were esti-
mated as shown in Table 2. The supply chain group
felt that this demand bound captured the appropriate
level of demand that they wanted to configure their
system to meet using safety stock.

5.3. Different Solution Approaches
Table 3 summarizes the results from the four solution
approaches evaluated in the project.

5.3.1. Minimum UMC Heuristic. The minimum
UMC heuristic consists of choosing the lowest cost
option at each stage and then optimizing the safety
stock levels across the supply chain; the expected
pipeline stock cost and COGS are the same as for
the current policy, but the safety stock cost is lower.
The optimal safety stock policy is to position several
decoupling safety stocks across the supply chain, as
shown in Figure 2, where each triangle denotes that
the stage is holding safety stock.

Table 2 Demand Parameters for Different Markets
Demand stage Mean Sigma
U.S. demand—gray 200 120
Export demand—gray 75 50
U.S. demand—blue 125 80
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Table 3  Results of Four Solution Approaches 5.3.2. Minimum Lead-Time Heuristic. The min-

- - . imum lead-time heuristic chooses the single option

Minimum  Minimum  Supply chain . . .

Curent  UMC  lead-time configuration ~ at each stage with the shortest lead time. With the

policy  heuristic  heuristic  algorithm exception of electronic parts, the optimal placement of

safety stocks is identical to the minimum UMC pol-

Cost components ($) icy, but the actual stock levels differ due to the sup-

C0GS 1738 1738 1873 1775 Yy, but rual s : p

Pipeline stock cost 16.2 16.2 4.9 1.0 ply chains having different lead times. Because all the

Safety stock cost 2.8 2.4 1.3 1.8 electronic parts are held on consignment, there is no

Total SC cost 1927 1923 1935 190.4 need for a safety stock of eight-week parts, and it is

Supply chain metrics optimal to hold inventory only at the subassembly
Inventory investment 413 413 13.9 285 and the finished goods stages.

UMC ($/unit) 1,737.56 1,737.56 1,872.93  1,775.43 Safety stock and pipeline stock costs are dramati-

Longest path (days) 91 91 35 68

All demand stages hold safety stock because they
must quote a service time of zero. However, there is
no safety stock at notebook or cover assembly; rather,
the subassemblies that supply notebook assembly
hold sufficient safety stock so that they can quote a
zero service time for notebook assembly. For the cir-
cuit board, this translates into quoting a four-week
service time for parts (which requires an inventory of
eight-week parts).

The initial investment in safety stock and pipeline
stock to create the supply chain equals $41.4 mil-
lion; the holding cost for safety stock and pipeline
stock reflects the company’s 45% carrying cost. The
expected demand over the course of one year is
100,000 units. Because a completed unit costs either
$1,737 or $1,740, depending on the customer region,
COGS dominates the total supply chain configura-
tion cost.

cally reduced due to the reduced lead times across the
network. However, this comes with a 7.8% increase to
the product’s UMC. The initial investment in safety
stock and pipeline stock to create the supply chain
equals $13.8 million. The minimum lead-time heuris-
tic results in a supply chain configuration cost that
exceeds the minimum UMC heuristic by $1.2 million.

5.3.3. Supply Chain Configuration Optimization.
In Table 4, we list the options selected by the algo-
rithm presented in §4.2. In this configuration, we hold
all electronic components on consignment, reduce the
metal housing’s lead time to 30 days, and ship the
finished goods by air. The optimal safety stock policy
is represented in Figure 3.

The optimal policy holds a decoupling inventory
at notebook assembly; this location allows demand
pooling across the three end items. By placing elec-
tronics components on consignment and choosing the
metal housing with the shortest lead time, the opti-
mal solution is one where the upstream assemblies are

Figure 2 Optimal Safety Stock Placement for the Minimum UMC Heuristic
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Table 4 Options Selected Using Optimization Algorithm

Component/process description ~ Option  Lead time  Cost added ($)

Parts w/ eight-week lead time 4 0 136.59
Parts w/four-week lead time 3 0 205.03
Parts w/two-week lead time 2 0 156.93
Parts on consignment 1 0 200.00
Circuit board assembly 1 20 120.00
LCD display 1 60 300.00
Miscellaneous components 1 30 200.00
Metal housing 2 30 240.00
Battery 1 60 40.00
Notebook assembly 1 5 120.00
Gray cover 1 40 5.00
Blue cover 1 40 5.00
Gray assembly 1 1 30.00
Blue assembly 1 1 30.00
U.S. demand—gray 2 1 20.00
Export demand—gray 2 2 30.00
U.S. demand—blue 2 1 20.00

“balanced.” That is, each subassembly is configured
to quote a service time of 30 days to the notebook
assembly.

The initial investment in safety stock and pipeline
stock equals $28.5 million. This configuration increa-
ses the UMC by 2.2% over the minimum UMC
heuristic but decreases the total supply chain cost by
$2.0 million, or $20 per unit.

To put this cost savings in perspective, compare
this to the savings from the current policy. The
current policy chooses the cheapest option at each
stage and holds inventory at all stages in the sup-
ply chain (as shown in Figure 1). The minimum UMC

Figure 3 Optimal Safety Stock Placement for Optimization Algorithm
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heuristic optimizes the safety stock placement and
saves $0.4 million over the current policy. By optimiz-
ing the supply chain’s configuration, we save $2.2 mil-
lion, more than five times as much as optimizing just
the safety stock placement.

Finally, increasing the UMC by $37 is a nontriv-
ial increase that would not be authorized without the
kind of analysis given here. It is unlikely that the
design team would ever discover this configuration
by itself.

The optimal solution does not include some choices
that one might have considered obvious. For exam-
ple, one might be tempted to pay an additional $0.50
to reduce the lead time for covers from 40 to 15 days.
Similarly, $5 to reduce battery lead time from 60 to
20 days might seem attractive. Yet in neither case
does the benefit from the reduced lead time offset the
increase in unit cost.

5.4. The Role of Holding Cost
An effective way for managers to strike a balance
between COGS and inventory cost is through the
choice of the holding cost rate. The holding cost rate
can reflect not only the cost of capital and storage-
related costs but also how much risk the company
associates with making a large investment in safety
and pipeline stock. This is particularly relevant for
products like notebook computers that have short life
cycles and high costs of obsolescence.

Figures 4 and 5 display inventory investment and
supply chain configuration cost as functions of the
holding cost rate for each of the three solutions
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Figure 4 Inventory Investment as a Function of the Holding Cost Rate Table 5 Optimal Supply Chain Configuration Under Different Holding
Cost Rates
45
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£35 < — - - Supply Chain Parts w/ eight-week lead time 1 3 4 4 4 4
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approaches. In these two figures, we see how the zlrl;e (;(;\;Zrmbl 1 1 1 1 1 1
optimal supply chain configuration moves from the Blug assembl;/ 1 1 1 1 1 1
minimum UMC solution to the minimum lead-time U.S. demand—gray 1 2 2 ) ) )
solution, as a function of the holding cost rate. Export demand—gray 2 2 2 2 2 2
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As the holding cost rate increases, the supply
chain configuration algorithm chooses more higher-
cost options, as seen in Table 5. When the holding
cost rate is low, COGS dominates the total configu-
ration cost. Therefore, the minimum UMC heuristic
produces a solution that is very close to the optimal
solution. But as the holding cost rate increases, the
supply chain configuration algorithm creates a sup-
ply chain that comes closer to that for the minimum
lead-time heuristic.

5.5. Insights Drawn From the Case Study

From this case study, we make five observations
regarding supply chain configuration, and examine
these observations in more detail in the following sec-
tion.

OBsERVATION 1. In the optimal supply chain con-
figuration, downstream stages are more likely to use
high-cost options and upstream stages are more likely
to use low-cost options and hold safety stock.

In the following observations, we make statements
of the performance of the optimal supply chain con-
figuration relative to the performance of the mini-
mum UMC configuration. In §6, we also examine how

Figure 5 Supply Chain Configuration Cost as a Function of the Holding
Cost Rate
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these statements adapt in comparison to the mini-
mum lead-time configuration.

OBSERVATION 2. The benefits of supply chain con-
figuration increase as the importance of inventory
costs increases relative to the total supply chain costs.

OBSERVATION 3. The benefits of supply chain con-
figuration increase as the relative demand variability
increases.

OBSERVATION 4. The benefits of supply chain con-
figuration increase with longer lead times at down-
stream stages.

OBSERVATION 5. More echelons increase the bene-
fits of supply chain configuration.

6. Serial-Line Design of Experiments
The purpose of the computational analysis in this sec-
tion is to provide more evidence to support or refute
the five observations made in the previous section. We
first describe the test problem and then report results
for each observation.

6.1. Scenario Definition

We consider a serial-line supply chain where there are
low-cost and high-cost options at each stage. For each
scenario, the selection of the low-cost option at each
stage results in the total per unit cost of the product
of $100 and a total production time of 100 days.

We define a scenario by the number of stages in
the serial line and a characterization of the high-cost
option available at each stage. At each stage, the high-
cost option is a fixed percentage more expensive and a
fixed percentage faster than the low-cost option. Thus,
scenario (8,3,30) denotes an eight-stage serial line
where the high-cost option at each stage is 3% more
expensive than the cost of the stage’s low-cost option



Graves and Willems: Optimizing the Supply Chain Configuration for New Products

Management Science 51(8), pp. 1165-1180, ©2005 INFORMS

1175

and 30% faster than the production time of the stage’s
low-cost option.

For each scenario, we evaluate and solve 810 supply
chain configuration problems that correspond to the
permutations of three cost-accrual profiles, three time-
accrual profiles, three mean demands, three standard
deviations of demand, and 10 holding cost rates.

The three profiles for cost and time accrual are pre-
sented in Figure 6. We define the cumulative posi-
tion x of stage i in an N-stage serial supply chain to
be x =i/N; i.e, stage 1 is the raw material stage with
x=1/N, and stage N is the finished goods stage with
x = 1. The profile f(x) denotes the cumulative cost, or
time, for all the low-cost options up to and including
that stage. For both cost and time, we consider three
profiles: f(x) =x°%, x, and x*. For example, if the cost
profile were f(x) =x%%, then the cost of stage i’s low-

cost option is
i\ 025 i1 0425‘
N N ’

for the numerical results that follow, the profile calcu-
lations are rescaled to $100 or 100 days and rounded
to two significant digits.

These profiles allow us to capture the breadth of
supply chain structures that exist in reality. For exam-
ple, traditional consumer-electronics-manufacturing
supply chains consist of high raw material cost and
long component lead times (where both cost and time
follow x°%), whereas an original equipment manu-
facturer (OEM) relying on outsourced manufacturing
may see a similar cost profile but a time profile much
more like x?, due to the fact that its supply chain
responsibilities are primarily distribution based.

We consider high, medium, and low values for both
the mean and standard deviation of demand. For both

Figure 6 Cost and Time Profiles for Low-Cost Options
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the mean and standard deviation the respective val-
ues are 100, 50, and 10. Therefore, permutations will
have coefficients of variation ranging from 0.1 to 10.
We consider 10 realizations of holding cost, varying
from 10% to 100% in 10% increments. This range of
values for holding cost captures different industries’
assessment of the risk in their supply chains.

6.2. Hypothesis Evaluation

Unless otherwise noted, the results in this section
consider an eight-stage serial supply chain. Figure 7
is a contour map representing the percentage differ-
ence between the optimal supply chain configuration
(SCC) and the optimized minimum UMC heuristic.

To gain deeper insight into the problem space, we
will focus our attention on the (8, 3, 30) scenario. For
the 810 permutations associated with this scenario, on
average the total cost of the minimum UMC heuristic
exceeds the optimal SCC policy by 1.95%, and in 73%
of the permutations the optimal SCC includes at least
one high-cost option. The results from this scenario
hold true across the range of scenarios displayed in
Figure 7.

OBsERVATION 1. In the optimal supply chain con-
figuration, downstream stages are more likely to use
high-cost options and upstream stages are more likely
to use low-cost options and hold safety stock.

Choosing a high-cost option at a downstream stage
increases COGS but has only a local impact on
pipeline stock cost. In contrast, choosing a high-cost
option at an upstream stage increases not only COGS
but also the safety and pipeline stock costs of all of
its downstream stages. Second, holding safety stock
at upstream stages is a relatively inexpensive way to

Figure 7 Contour Map for Scenarios with Eight-Stage Serial Supply

Chain When the Percentage Changes for High-Cost Options’
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Percentage of Time Each Stage Holds Safety Stock and
Selects the High-Cost Option (8, 3, 30 Scenario)

Figure 8
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buffer long lead times at upstream stages. A safety
stock acts to decouple the stage from the rest of the
supply chain, making the effective lead time to the
rest of the supply chain zero.

For the (8,3, 30) scenario, Figure 8 plots the per-
centage of permutations (810 in total) for which each
stage chooses the high-cost option and the percentage
of permutations for which each stage holds a decou-
pling safety stock.

For this scenario, stages 6 and 7 never hold safety
stock and stage 5 does so less than 1% of the time; by
assumption, the finished goods inventory (FGI) stage,
stage 8, provides immediate service to end item cus-
tomers so it always holds safety stock. Downstream
stages are much more likely than upstream stages
to choose the high-cost option, while the upstream
stages are more likely to hold inventory.

OBsERVATION 2. The benefits of supply chain con-
figuration increase as the importance of inventory
costs increases relative to the total supply chain costs.

When inventory costs are a small component of
the total supply chain cost, then COGS dominates the

expression and the default solution to choose the low-
est cost options will perform very well. As the inven-
tory cost component of the total supply chain cost
increases, there is an increasing likelihood that the
inventory benefits from a high-cost option will out-
weigh the increase to COGS. When inventory costs
are dominant relative to COGS, then the minimum
lead-time heuristic will perform well relative to the
optimal SCC.

In Table 6 we segment the (8,3,30) scenario by
the holding cost rate and then compare the perfor-
mance of SCC to that of the minimum UMC and
minimum lead-time heuristics. When the holding cost
rate is low, COGS dominates and the minimum UMC
heuristic produces a solution that is very close to the
optimal solution. The minimum lead-time heuristic
performs best when the holding cost rate is high, and
inventory costs are a more significant contributor to
the total supply chain costs. Nevertheless, the optimal
solution from the supply chain configuration algo-
rithm differs from the heuristic solutions most of the
time, especially for the mid ranges for the holding
cost rates.

OBsERVATION 3. The benefits of supply chain con-
figuration increase as the relative demand variability
increases.

Greater demand variability results in a higher
safety stock cost while leaving COGS and pipeline
stock cost unchanged; thus, there is a greater likeli-
hood that inventory savings from a high-cost option
can offset the increase in COGS.

In Table 7 we segment the (8,3,30) scenario by
the mean and standard deviation of demand. As the
mean demand increases or the standard deviation of
demand decreases, the benefit from optimizing the
SCC decreases relative to the minimum UMC because
the impact of COGS increases relative to the impact
of safety stock. Conversely, relative to the minimum
lead-time heuristic, as the mean demand decreases, or
the standard deviation of demand increases, the ben-
efit from optimizing the SCC decreases because the

Table 6 Scenario (8, 3, 30) Segmented by Holding Cost Rate
Average amount Percentage of Average amount Percentage of

Holding min. UMC exceeds  permutations opt. SCC  min. lead time exceeds  permutations opt. SCC
cost rate (%) opt. SCC (%) equals min. UMC opt. SCC (%) equals min. lead time

10 0.1 75.3 2.2 0.0

20 0.4 58.0 17 0.0

30 0.7 28.4 14 1.2

40 1.2 27.2 1.2 3.7

50 1.7 21.0 1.0 3.7

60 2.2 17.3 0.9 6.2

70 2.6 16.0 0.8 7.4

80 341 14.8 0.7 11.1

90 3.6 7.4 0.6 13.6

100 4.0 2.5 0.6 17.3
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Table 7a Average Percentage Amount Minimum UMC Exceeds Table 8a Average Percentage Amount Minimum UMC Exceeds
Optimal SCC for (8, 3, 30) Segmented by Demand Optimal SCC for (8, 3, 30) Segmented by Cost and
Time Accrual
Low sigma (%) Med sigma (%) High sigma (%)
T°% (%) T (%) T2 (%)
High mean 1.4 15 1.6
Med mean 14 1.6 1.9 c? 0.2 0.9 1.7
Low mean 1.6 2.7 3.9 c 0.4 1.7 2.8
co% 1.6 3.7 47
Table 7b Percentage of Permutations Where Optimal SCC Equals
Minimum UMC for (8, 3, 30) Segmented by Demand Table 8b Percentage of Permutations Where Optimal SCC
Equals Minimum UMC for (8, 3, 30) Segmented by
Low sigma (%) Med sigma (%) High sigma (%) Cost and Time Accrual
High mean 344 333 30.0 7025 (%) T (%) T2 (%)
Med mean 344 30.0 26.7
Low mean 30.0 13.3 8.9 c? 73.3 37.8 17.8
c 68.9 17.8 7.8
002 17.8 0.0 0.0
Table 7¢ Average Percentage Amount Minimum Lead Time Exceeds
Optimal SCC for (8, 3, 30) Segmented by Demand
Table 8¢ Average Percentage Amount Minimum Lead Time
Low sigma (%) Med sigma (%) High sigma (%) Exceeds Optimal SCC for (8,3,30) Segmented by Cost
High mean 14 13 12 and Time Accrual
Med mean 1.4 1.2 1.0 7025 (%) T (%) 72 (%)
Low mean 1.2 0.7 0.5
c? 1.7 0.8 0.7
c 1.0 0.7 1.0
0.25
Table 7d Percentage of Permutations Where Optimal SCC Equals ¢ 06 15 19
Minimum Lead Time for (8, 3, 30) Segmented by Demand
Low sigma (%) Med sigma (%) High sigma (%) Table 8d Percentage of Permutations Where Optimal SCC
- Equals Minimum Lead Time for (8, 3, 30) Segmented
High mean 11 22 3.3 by Cost and Time Accrual
Med mean 11 3.3 7.8
Low mean 3.3 14.4 211 T°% (%) T (%) T2 (%)
c? 5.6 0.0 0.0
. . . c 15.6 0.0 0.0
impact of COGS decreases relative to the impact of 025 367 0.0 0.0

safety stock.

OBSERVATION 4. The benefits of supply chain con-
figuration increase with longer lead times at down-
stream stages.

Downstream stages have higher holding costs than
upstream stages. As such, a lead-time reduction
results in greater holding cost savings in pipeline
and safety stock at a downstream stage relative to an
upstream stage. In Table 8 we segment the (8, 3, 30)
scenario by the cost-accrual and time-accrual profiles.

These tests confirm our hypothesis as the largest
improvements from the SCC occur for the cases
when the downstream lead times are greatest (T2
time accrual function). In particular, the benefit from
choosing the optimal SCC, relative to the mini-
mum UMC heuristic, increases as more cost accrues
upstream in the supply chain. As more cost accrues,
the incremental cost of choosing the higher-cost
options at downstream stages decreases, thereby mak-
ing the high-cost option at a downstream stage
relatively cheaper than in other configurations where
more cost accrues downstream. This adds to the

attractiveness of choosing the higher-cost options at
downstream stages.

The combination of these effects causes the 90 per-
mutations in [C%?, T?] to have the greatest improve-
ment because the high-cost options for downstream
stages provide the largest “bang for the buck”; these
options are cheap on a relative basis, yet yield a large
reduction in lead time, which cuts most expensive
inventory. All of the permutations that fall in this cat-
egory use some high-cost options.

The comparison of the SCC to the minimum lead-
time heuristic is also revealing. We see here that the
minimum lead-time heuristic is never optimal when
the time accrual function is T or T?, and the mini-
mum lead-time heuristic seems to perform best when
the cost and time profiles are similar. When the cost
and time profiles are asymmetric, there will be some
high-cost options in the minimum lead-time configu-
ration that give very little benefit yet cost a significant
amount.
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OBSERVATION 5. More echelons increase the bene-
fits of supply chain configuration.

More echelons provide a greater opportunity to off-
set an increase in COGS with a decrease in inventory
costs because there are more configuration options
from which to choose. In Table 9 we investigate the
role that the number of echelons has in the benefits
from optimizing the supply chain configuration.

Table 9 presents 16 different scenarios, each with
810 tests problems, corresponding to four different
echelon structures. For each chain with fewer than
eight echelons, we specify the times and costs for
each stage so that the chain reflects the cumula-
tive parameters of the eight-stage supply chain. For
example, stage 1 in the two-stage supply chain has the
cumulative cost and time for stages 1 to 4 in the eight-
stage chain. In Table 9a we demonstrate that, for the

Table 9a Average Percentage Amount Minimum UMC
Exceeds Optimal SCC for 16 Scenarios
Number of Option Option Option Option
echelons 2% 20% 3% 30% 4% 40% 5% 50%
8 1.3% 2.0% 2.7% 3.6%
4 1.2% 1.9% 2.7% 3.5%
2 1.2% 1.8% 2.5% 3.3%
1 0.9% 1.4% 2.0% 2.7%
Table 9b Percentage of Permutations Where Optimal SCC
Equals Minimum UMC
Number of Option Option Option Option
echelons 2% 20% 3% 30% 4% 40% 5% 50%
8 27.2% 26.8% 26.8% 26.7%
4 25.3% 24.2% 23.8% 23.8%
2 24.9% 24.8% 24.0% 22.8%
1 35.6% 35.6% 35.6% 35.6%
Table 9¢ Average Percentage Amount Minimum Lead Time
Exceeds Optimal SCC for 16 Scenarios
Number of Option Option Option Option
echelons 2% 20% 3% 30% 4% 40% 5% 50%
8 0.8% 1.1% 1.4% 1.8%
4 0.7% 1.1% 1.4% 1.7%
2 0.6% 0.9% 1.2% 1.4%
1 0.3% 0.5% 0.6% 0.7%
Table 9d Percentage of Permutations Where Optimal SCC
Equals Minimum Lead Time
Number of Option Option Option Option
echelons 2% 20% 3% 30% 4% 40% 5% 50%
8 6.2% 6.4% 7.2% 8.0%
4 9.1% 10.4% 11.5% 12.5%
2 18.8% 20.1% 22.2% 23.5%
1 64.4% 64.4% 64.4% 64.4%

same option—cost structure, more echelons increase
the benefits of optimizing the supply chain’s config-
uration. It is also true that in the framework of this
design of experiments, more echelons provide us with
stages that have cheaper options relative to chains
with fewer stages. This increases the likelihood that
some stages will yield a benefit from using the avail-
able high-cost option.

7. Conclusion and Next Steps

In this paper, we introduce and develop a model for
configuring new supply chains. We model the sup-
ply chain as a network whose nodes represent func-
tional requirements in the supply chain. For each
node, multiple options can exist to satisfy the func-
tional requirement. The optimal supply chain config-
uration minimizes the sum of three relevant costs:
COGS, safety stock cost, and pipeline stock cost.

As a form of validation, we describe a diagnos-
tic exercise where the model was used to deter-
mine and evaluate the best sourcing strategy for a
notebook computer supply chain. This case study
demonstrated that cost savings can be realized when
inventory cost and COGS are jointly optimized. Prior
applications of this approach are described in Graves
and Willems (2000b) and Wala (1999). We state some
general observations based on these examples and
confirm the observations by means of a computational
experiment.

This research raises several relevant questions for
further consideration; we conclude with five issues
that we think are most worthy of additional work.
First, time-to-market costs should be incorporated. This
can be accomplished by augmenting the two-state for-
mulation with a third state variable. The additional
state variable is the maximum replenishment time
(corresponding to the longest path) in the network.
Once the state variable has been added, the time-to-
market cost can be included in the criterion function.
Second, more general network structures should be con-
sidered. Spanning trees can capture commonality for
a few critical parts or processes, but there is a definite
need to allow more general component and process
commonality. Third, many firms wish to limit the num-
ber of different vendors that the model can choose. We
suspect that the most fruitful approach will be to pre-
process the available options at a stage, pruning some
options that would violate the constraints on addi-
tional vendors. If this were done as a preprocessing
step, then the original solution procedure will remain
valid.

Fourth, we assume that a single option is chosen
at each stage. In reality, a firm will often decide to
have dual or multiple sources. For instance, a firm might
opt to have both a cheap, long lead-time supplier
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and a more expensive, short lead-time supplier. The
long lead-time supplier would be the source for the
more predictable portion of demand, whereas the less
predictable demand would be served by the short
lead-time supplier. We have seen a similar strategy
applied in choosing transportation modes (Threatte
and Graves 2002) for product shipments from Asia
to North America, where a mixed strategy of using
both air and ship provides an effective hedge against
demand uncertainty.

We can think of two possible ways to incorporate
multiple sources in the configuration problem, nei-
ther of which is very satisfactory. First, one might
decide a priori to have, say, two sources and to split
the demand according to fixed percentages, say 60%
and 40%, between the two sources. Then, one can
replace this stage in the network model with two
stages, where one stage gets 60% of the demand
and the other gets 40% of the demand. We would
need to identify options for each of these two stages
and adapt the algorithm to ensure that the same
supply source is not chosen for each option. This
approach would provide accurate estimates of the
pipeline inventory costs and COGS; however, the cur-
rent model would not provide an accurate estimate of
the safety stock as it would think that the two stages
provide different components in fixed proportions of
60% and 40%. A variant of this approach would be
to split the demand by variability, i.e., a predictable,
base level of demand and an uncertain component,
and then source each separately.

A second approach is to create options that repre-
sent the choice of dual or multiple sources for a stage.
For instance, suppose that there are two options,
A and B; Then, we could create a third option repre-
senting dual sourcing from both A and B. Assump-
tions would be needed to decide the cost and lead-
time inputs for this third option, so that the model
would be able to determine the configuration costs;
again, the most challenging aspect would seem to
be how to get a good estimate for the safety stock
requirements.

The fifth consideration is to develop the supply
chain configuration problem for more conventional
assumptions on the behavior of the inventory sys-
tem. In particular, we assume a guaranteed service
model; that is, each stage provides 100% service
for its quoted service time. To determine the safety
stock required for this guarantee, we assume that
demand is bounded. In contrast, much of the multi-
echelon inventory literature assumes a stochastic ser-
vice model in which the service time between stages
can vary depending upon material availability at the
upstream stage. For the stochastic service model, the
determination of the safety stock typically requires
knowledge of the demand distribution. Graves and

Willems (2003) discuss and compare these two models
in the context of the safety stock placement problem.

We can suggest a few approaches to the supply
chain configuration problem with the stochastic ser-
vice model. One approach would be an iterative algo-
rithm that would iterate between an optimization
that selects the options and an optimization for the
safety stock placement. The first optimization could
be an integer linear program that chooses the options
so as to minimize COGS and the pipeline holding
cost, given the safety stocks. The second optimization
would be a multiechelon inventory model that mini-
mizes the cost of the safety stock for the set of selected
options. Open questions are how to ensure that such
a procedure would converge and whether it would
converge to a global optimum. A second approach
might be to develop an analytic expression for the
safety stock as a function of the replenishment time
at a stage. This expression would need to account for
the stochastic nature of the replenishment time for the
stage and its dependence on the choice of options at
upstream stages. As such, this is likely to require an
approximation. But then, if one can model the safety
stock as a function of the replenishment time, one
could conceivably use the dynamic program given in
this paper, or some variant of this.
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