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We extend the guaranteed service, supply chain modeling framework to allow for an arbitrary, integer review
period or ordering frequency at each stage. We define a notation for the cyclic inventory dynamics that
review periods introduce and generalize inventory-balance equations to accommodate three different periodic-
review operating policies—constant base stock, constant safety stock, and adaptive base stock. As a form of
validation, we apply the model to the Celanese acetic acid supply chain and show that inventory metrics of the
new model differ by more than 30 percent from those derived through the simpler modeling approach of
aggregating a review period into lead time.
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Leading-edge companies have integrated lean
manufacturing and Six Sigma processes deeply

into their organizations to reduce the total length
and cost of their supply chains while maintaining
or increasing service to their customers. Against this
backdrop, firms are also outsourcing significant por-
tions of their operations and integrating their pro-
cesses more tightly into the delivery networks of
their customers. An integrated and long-lasting sup-
ply chain improvement process increases inventory
turns, increases return on assets, and decreases cash-
to-cash cycle times. These factors improve corporate
performance. However, continued advances in lean
initiatives and the increasing complexity of supply
chains pose modeling challenges. In particular, these
improvements increase the importance of correctly
modeling operating times and policies across the sup-
ply chain; they raise the bar that a useful model must
cross.
Periodic-review models make up a rich research

stream within the field of inventory management;
for a broad survey of such models, we refer the
reader to Federgruen (1993). However, the complex-
ity that review periods introduce seems to have lim-
ited results for chains with stage-dependent review

periods to specialized systems. Papers illustrative of
this work include Graves (1996) and van Houtum
et al. (2003). Graves (1996) develops a computation-
ally intensive, exact evaluation approach of inventory
levels in a distribution system facing demands with
independent increments. Van Houtum et al. (2003)
prove that a base-stock policy is optimal for a serial-
line network with nested review periods.
Developing a model to optimize inventory levels

and locations across a supply chain in the presence
of review periods entails trading off exactness and
tractability. Our approach is similar in spirit to that
of Lee and Billington (1993), who develop a decen-
tralized model to set inventory levels across a multi-
echelon supply chain subject to demand and supply
variability. To make their model tractable, the authors
richly characterize a single-stage inventory model;
however, they assume that the demand process each
stage faces is an allocation of the end-item demands
that the stage satisfies.
In this paper, we extend the discrete-time, supply

chain modeling framework that Simpson (1958) orig-
inally described to allow for an arbitrary, integral
review period at each stage of a chain as well as
different inventory policies. Simpson (1958) defined
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the guaranteed service modeling (GSM) framework
for a serial-line and distribution network. Graves and
Willems (2000), which we hereafter refer to as GW,
extended the framework to supply chains that are
modeled as spanning trees; they formulated a deter-
ministic, dynamic program to optimize the spanning
tree models. Humair and Willems (2006) further gen-
eralized the network structure to so-called clusters of
commonality. Application of this modeling approach
at Hewlett-Packard was a 2003 Edelman Prize final-
ist (Billington et al. 2004). All previous GSM work
assumes a single underlying review period that is
common to all stages. We summarize the GSM frame-
work in Appendix 1—Reviewing the GSM Framework.
Although single-stage models often readily accom-

modate review periods, stage interactions can greatly
complicate multiechelon models. First, review peri-
ods complicate demand propagation. A stage that
reviews periodically typically orders periodically and
so generates intermittent demand. Intermittent or
more general, nonstationary incoming demand, com-
bined with periodic review, compounds the compli-
cation. Although nested review periods effectively
negate intermittency and seem broadly appropriate,
they do not always appear in practice, as the real-
world example in the Application at Celanese section
illustrates. Without nesting, one must account for not
just review-period lengths but also for staggering.
A stage that orders every two days must distinguish
weekly demand originating on Mondays from weekly
demand originating on Fridays. In addition, many
different ordering policies exist. A stage might always
order up to a fixed, precalculated base-stock target.
This case seems most straightforward, and we con-
sider it first. Alternatively, a stage might order to
maintain a constant safety-stock level, choose a fully
adaptive base-stock policy, or even smooth demand.
Ordering behavior affects inventory dynamics at the
stage in question and further complicates demand
propagation. In the Extension for General Review Periods
section, we describe the models and briefly general-
ize the dynamic GW program to accommodate review
periods.
The Application at Celanese section demonstrates

the importance of review periods by presenting the
successful application of this model at Celanese,
a $6 billion chemical company. Celanese and the

chemicals industry in general encompass a host of
review-period variations that are often too critical
to ignore. Boats operating under fixed schedules
transport many raw materials and finished goods.
Customers are assigned specific days to order each
week, and some distribution centers review at dif-
ferent frequencies. Sometimes requirements are sim-
ply transmitted monthly, and sometimes they are
smoothed over the monthly review cycle. Finally,
the capital intensity of the business makes cyclic
schedules commonplace. Our modeling framework
addresses each of these issues. Although we focus on
the application at Celanese, we have integrated our
review-periods research into the Optiant PowerChain
software application. More than a dozen Fortune 500
companies, including Black and Decker, Boston Sci-
entific, Hewlett-Packard, Honeywell, Intel, and Proc-
ter & Gamble, have applied it.
We offer some conclusions in the Conclusion section.

Extension for General Review Periods
Extending the GSM framework to include review
periods involves two primary complications—char-
acterizing internal demand streams and generalizing
the inventory-balance equation. In a single-stage set-
ting (Hadley and Whitin 1963), the time interval of
interest is the order cycle that elapses between consec-
utive orders or consecutive replenishments. The mul-
tiechelon setting involves three cycles at each stage.
The order cycle still exists and still equals the review
period. However, this cycle operates in concert with
two additional cycles. First, incoming demand might
be intermittent or more generally cyclic, and the
cycle length of inbound demand depends on down-
stream review periods. A third cycle governs inven-
tory dynamics at the stage itself as well as outgoing
demand transmission to its suppliers. We assume that
the review period defines the frequency with which a
stage places demands on its suppliers or, more gen-
erally, modifies its ordering behavior. In addition, the
suppliers receive demand information only through
these orders, although they know their customers’
inventory policies.
The Demand Propagation Under a Constant Base-Stock

Target and Single-Stage Model sections develop the
notation and inventory-balance equation for a single
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stage that resets its inventory position to a constant
base-stock target in the presence of arbitrary review
periods. Using two examples, the Example section
illustrates the inventory dynamics that the balance
equation implies. The Demand Bounds and Service-
Level Targets section connects the demand bounds to
service-level targets, and the Optimization section gen-
eralizes the GW dynamic program to account for
review periods. The Adaptive Base-Stock and Constant
Safety-Stock Policies and Demand Smoothing sections
extend the analysis to adaptive base-stock targets and
a particular version of smoothing.

Demand Propagation Under a Constant
Base-Stock Target
If a stage has a constant base-stock target, its order-
ing process under review periods remains simple;
each review period, it resets its inventory position to
the target by ordering the demand incurred since it
last reviewed. We denote the length of the stage j

review period by Rj and a corresponding offset by
�j∈�0�1�2� � � � �Rj − 1�. That is, stage j places orders
at times �j + n · Rj for n = 0�1�2� � � � � Offsets per-
mit discrimination among stages that, for example,
review weekly but on different days. Although the
external demand processes remain stationary, stage-
dependent review periods make the internal demands
cyclic, and we denote the length of the demand
cycle that stage j faces by 	inj . That is, for integers n
and some fixed time t, the demands that stage j

faces at times t+n ·	inj are independent and iden-
tically distributed. Because stage j might not order
every period, the cycle length of the demand process
that stage j generates might differ from that of the
demand process that it faces. In particular, this out-
going cycle length is the least common multiple of
the incoming cycle length and stage j’s review period.
We denote the length of stage j’s outbound demand
cycle by 	outj = LCM�	inj �Rj�. Similarly, the inbound
demand-cycle length at stage j is the least common
multiple of the outbound demand-cycle lengths gen-
erated by the stages immediately downstream from
stage j . That is, 	inj = LCM��	outk � k� �j� k�∈A��. We
can calculate inbound and outbound demand-cycle
lengths by first considering the stages facing external
demand, then the stages upstream to only demand-
facing stages, and so on.

Given the demand process that stage j faces, we
can calculate the demand it places upstream at some
time t by summing incoming demands over the
relevant time window of Rj consecutive periods.
That is, doutj �t� = dj�t−Rj� t� if t = �j + n · Rj for
some integer n, and zero otherwise. Given the cyclic
demand processes of the stages immediately down-
stream from a stage j , we can characterize the demand
that stage j faces in some period t of its demand
cycle as dj�t� =

∑
k � �j� k�∈A �jk · doutk �t�. We can propa-

gate demand throughout the chain by again starting
with stages facing external demand and proceed-
ing upstream. Like GW, we assume that demand
bounds D�·� ·� exist. However, because demand is
now cyclic, each bound specifies a window of time
rather than just a length. More specifically, we assume
the existence of functions D�·� ·� such that Dj�t� �� ≥∑�

s=1 dj�t+ s� for � > 0 and t∈�1�2� � � � �	inj �.
Single-Stage Model
We next develop the inventory-balance equation for
a single stage; for clarity, we omit stage indices from
this section. The net inventory-balance equation at
time t generalizes to

I�t�= B− d�t− SI − T − x�t�� t− S�� (1)

where B is the constant base-stock target, and x�t�=
�t− T − SI −��modR. The equation differs from that
of GW by only the x�t� term, and if R= 1, the equa-
tion reduces to that of GW. The first argument to
d�·� ·�, t−SI−T −x�t�, corresponds to the last demand
replenished by the stage’s supplier by time t, and the
correction term x�t� reflects the additional inventory
exposure because of review periods that are greater
than one. Also, x�·� affects increments of the first argu-
ment of d�·� ·� in multiples of the review period R;
the stage receives a replenishment only once every R
periods. To derive the expression for x�·�, note that
the last replenishment order to arrive in inventory by
time t replenished demands through the correspond-
ing order time, say �+ n∗ ·R, where n∗ is the largest
integer such that �+n∗ ·R+T +SI ≤ t, assuming that
a replenishment is available to serve demand in its
period of arrival. The first argument to d�·� ·� equals
the time �+n∗ ·R, and x�t� is the quantity that makes
the above inequality defining n∗ an equality. The lat-
ter argument of d�·� ·�, t − S, corresponds to the last
demand fulfilled by time t.
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The distribution of the inventory level I�t� is cyclic
with cycle length 	out. The length of the demand win-
dow, d�t− SI − T − x�t�� t− S�, cycles from T + SI − S

to T + SI − S + R− 1 as x�t� cycles from 0 to R− 1.
The incoming demand stream has cycle length 	in,
and the demand window advances along this stream
R units every review period. In turn, the window
contents and the inventory level have the same dis-
tribution every LCM�R�	in�= 	out periods. We assess
average inventory and other metrics over 	out con-
secutive periods. Also, we generalize the definition
of net-replenishment lead time (see Appendix 1) to
T + SI − S +R− 1, the maximum inventory-exposure
length.
We set the base-stock target B to the smallest de-

mand bound that guarantees a nonnegative inventory
level I�t�. The inventory level cycles, so we set the tar-
get to the greatest bound on the demand term of the
inventory-balance equation. Because D�·� �� increases
with � , we can restrict the search to times when inven-
tory is exposed to a full net-replenishment lead time
of t + SI + T − S + R − 1 periods. In turn, the base
stock should be set to the largest demand bound
corresponding to times � + n · R + T + SI − 1 for
n= 0�1�2� � � � �	out/R− 1, the times just before orders
arrive. To see this result from another perspective,
consider some time t =�+n ·R. The order placed at t
will arrive in inventory at time t + SI + T , and the
subsequent order will arrive at time t + SI + T + R.
Consequently, the base stock needs to cover demand
over �t� t+SI+T −S+R−1�, and the single base-stock
target is the greatest demand bound corresponding to
such an interval. Therefore, by either argument,

B=max
{
D�t�SI + T − S+R− 1� � t =�+n ·R�

n= 0�1�2� � � � � 	
out

R
− 1

}
�

Example
We next illustrate the dynamics of the review-periods
model using two examples. Consider first the two-
stage chain of Figure 1.
Stage B supplies stage A, and the review peri-

ods are nested because the upstream review period
of 4 is a multiple of the downstream review period
of 2. External demand is normally distributed with
mean and standard deviation of 10 units per period.

B A

R = 4
T = 2
S = 1

R = 2
T = 3
S = 0

µ = 10
σ = 10ϕ = 1

Figure 1: We illustrate a two-stage chain with nested review periods.

Stages A and B have processing times of 3 and 2,
respectively, and quote service times of 0 and 1. The
arc multiplier is 1, and neither stage has a posi-
tive offset �. During every other period, stage A
places an order on stage B that is normally distributed
with mean 20 and standard deviation

√
102+ 102 =

14�14. An order placed by A arrives in its inventory
four periods after placement: one period-of-service
time from B and three periods-of-processing time at
Stage A. Therefore, given its review period of two
periods, stage A is exposed alternately to four and
five periods of demand. Also, 	outA = 	inB = 2. Demand
is placed on stage B during every other period. How-
ever, because it orders every four periods, its demand
is effectively stationary. Each order that stage B places
has mean 40 and standard deviation

√
400= 20, and

it arrives in stage B inventory two periods after place-
ment, assuming the external supplier to stage B has a
service time of 0.
Next, suppose we add to the chain a second de-

mand stage C that reviews every three periods and
receives external demand with mean and standard
deviation of 20 units per period, as Figure 2 shows.
The review periods are no longer nested because the
stage B review period of 4 is not a multiple of 3.
Although stage C reviews every three periods, its

inventory dynamics are qualitatively similar to those
of stage A because both receive external demand.
However, the stage C review period complicates the
dynamics at stage B. Stage B still receives an order
from A every other period; it now receives an order
from C every third period, and 	inB = LCM�2�3� = 6.
Stage B still orders every four periods. However, the
demand stream it sees is no longer effectively station-
ary, and the stage B inventory dynamics operate on a
	outB = LCM�6�4�= 12-period cycle (Table 1).
Table 1 charts stage B activity over time and in-

cludes demands from A and C, as well as orders
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B

A

C

R = 4
T = 2
S = 1

R = 2
T = 3
S = 0

R = 3
T = 3
S = 0

µ = 10
σ = 10

µ = 20
σ = 20

ϕ = 1

ϕ = 1

Figure 2: We show a three-stage supply chain with nonnested review
periods.

placed by B every fourth period. Demands placed
on stage B are fulfilled a service time SB = 1 after
receipt. In addition, stage B orders arrive in its inven-
tory two periods after placement. This translates to
periods 2, 6, and 10 of each 12-period cycle. For any
period t, stage B inventory is exposed to demands
received over the time window �t − SI − T − x�t��

t − S� = �t − x�t�− 2� t − 1�, and the maximum expo-
sure length of four periods occurs when x�t� = 3, at
times 1, 5, and 9, the periods immediately before a
replenishment arrival. At period 1, stage B is exposed
to two demands from A and two from C, and at times
5 and 9, the exposure includes two demands from A
and just one from C. Therefore, the stage B constant

Stages Fulfilling Stage B Stage B
placing demand placing receiving

Period demands to stages order order

1 A, C
2 A Yes
3 C A
4 A C Yes
5 A
6 A, C Yes
7 A, C
8 A Yes
9 C A
10 A C Yes
11 A
12 A, C Yes



Stage B’s largest
exposure spans the
last four periods of
its 12-period cycle.

Table 1: Table data illustrate stage B inventory dynamics.

base-stock target corresponds to the bound on two
orders each from stages A and C.

Demand Bounds and Service-Level Targets
Although our treatment of review periods assumes no
demand distribution, distributional assumptions are
convenient, if not necessary, to actually calculate base-
stock values. Indeed, in practice we consider demand
bounds only implicitly and propagate a service target
to each stage. If each review period is one, each stage
faces stationary demand, and GW noted that assum-
ing stage j receives normally distributed demand
with mean � and standard deviation � implies a
bounding function of the familiar form D���= � ·�+
z ·� ·√� , where � is the net-replenishment lead time,
and z is a safety factor. Under the guaranteed service
assumption, we can readily translate each such bound
into a Type I service level, the probability of fulfilling
all demand of a given period on time.
Under review periods, we generalize such implied

service-level targets from the Type I definition. A base
stock that ensures a sufficiently low stock-out prob-
ability for each period of 	out consecutive periods
would have inconsistent meaning. For example, for a
stage that receives stationary demand, 95 percent ser-
vice under a review period of 4 will be greater than
95 percent service under a review period of 1; in the
former case, the stock-out probabilities in the three
days after an order arrives are likely to be near zero
percent. Consequently, we calculate base-stock targets
that achieve a weighted average of the Type I service
levels defined over an inventory cycle of length 	out,
with one value taken per base time unit. Because
we have no direct means of inversing this compos-
ite service level, we employ iterative searches to find
the base-stock target that achieves the desired service
level.

Optimization
We optimize service times in supply chains with re-
view periods by applying the dynamic program of
GW to a generalized version of problem (P) (see
Appendix 1). More specifically, we calculate inventory
levels through Equation (1) rather than the inventory
balance of GW, and we generalize the first set of con-
straints to Sj−SIj ≤ Tj+Rj−1 to reflect the generalized
definition of net-replenishment lead time. Although
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the inventory level of GW is stationary, we must aver-
age the expected inventory levels implied by Equa-
tion (1) over the 	out periods of an inventory cycle; to
increase computational tractability, we make several
approximations. We approximate the demand term
of Equation (1), d�t − SI − T − x�t�� t − S�, by assum-
ing stationary demand. More specifically, we note the
length of the delimited time window cycles between
SI + T − S and SI + T − S + R− 1, and we make the
approximation

E

[
1
	out

·
	out∑
t=1

d �t− SI − T − x �t� � t− S�

]

≈
(
1
	out

·
	out∑
t=1

�t

)
·
(
SI + T − S+ R− 1

2

)
·R�

where �t is the mean of time t demand.
In addition, we do not evaluate the base-stock term

of Equation (1) at all service times exactly because
each evaluation entails the relatively expensive iter-
ative search that we note in the Demand Bounds and
Service-Level Targets section. We make the approxima-
tion that the base stock is a function of the times SI
and S through only the difference SI −S, evaluate the
base stock exactly at several values of SI−S, and then
apply interpolation to evaluate intermediate values.
More significantly, review periods introduce depen-

dence between demand propagated to a stage and
downstream service times; the dynamic program
cannot readily address this circularity. By contrast,
demand propagation under the GW model is inde-
pendent of service times and can be performed before
optimization. Minimizing inventory levels under the
generalized version of problem (P) would require
repropagating demand at each stage of the dynamic
program; this would, in turn, involve determining the
optimal cost-to-go solution and break the efficiency of
dynamic programming. Consequently, we propagate
a priori the demand stream for service times equal to
zero and then use this stream throughout the dynamic
programming algorithm.
We tested the above approach against exhaus-

tive enumeration on 189 five-stage serial-line supply
chains. The 189 chains represent the permutations
of three cost-accrual profiles, three lead-time profiles,
and 21 review-period profiles. In 131 of the 189 chains,

the approximate solution generated by this section
produces the same solution as the exact solution found
by enumeration. The average error across all chains
is 1.27 percent; for the 58 chains where the approxi-
mation did not produce the optimal safety-stock pol-
icy, the conditional average error was 4.14 percent (see
Appendix 2 for details). These results and the real-
world demand for efficient computation support the
use of the approximation approach.

Adaptive Base-Stock and Constant
Safety-Stock Policies
A constant base-stock policy implies ordering, at each
review period, the demand incurred since the previ-
ous review period. Therefore, it increases clarity of
analysis. We next derive the ordering behavior under
a general adaptive base-stock policy, assuming a set
of precalculated targets, one for each review period
over an outgoing demand cycle of length 	out. Such
a policy might lower inventory levels or otherwise
improve operations. By construction, a stage orders
up to its base-stock target at each review period. Now,
however, the targets vary over time. The effect on
Equation (1) is that the base-stock term now requires
a time index. We find it convenient to decompose the
base-stock target into the expected demand that the
target must cover and safety stock. Fixing the latter
term defines a constant safety-stock policy, a special
case of adaptive policies that we consider at the end
of this section.
We express the target as

B�t�=
t+SI+T+R−1−S∑

s=t+1
�s + SS�t��

Recall from the Single-Stage Model section that an
order placed at review period t effectively covers de-
mand over �t� t+SI+T −S+R−1�. The latter term of
B�t� is a potentially adaptive safety-stock value, and
it corresponds to the expected inventory level at time
t + SI + T + R− 1, immediately before arrival of the
following order.
Because a stage still orders up to its base-stock tar-

get, we can calculate the quantity ordered at review
period t, O�t�, as

O�t�= B�t�− IP�t�� (2)
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where IP�t� is the inventory position at time t, after
demand arrival but prior to order placement. As such,
IP�t� is

IP�t�= B�t−R�− d�t−R� t�� (3)

Substitution yields

O�t�= d�t−R� t�+B�t�−B�t−R�� (4)

Qualitatively, the order consists of two parts—the
demand observed since the previous review period as
under a constant target, as well as a base-stock adjust-
ment. The adjustment terms telescope over time, and
their sum over a cycle of length 	out is zero. In
addition, the adjustment terms permit negative order
quantities. A real operation would be unlikely to dis-
assemble goods and ship them upstream; we assume
that the distortion of a stage retaining a negative
demand instead of returning it upstream is small
enough to ignore safely.
Even without product disassemblies, the regular tar-

get adjustments of an adaptive base-stock policy can
prove difficult to implement, particularly through an
enterprise advanced planning and scheduling (APS)
software application that requires specific inventory
targets as input. A constant safety-stock policy seems
easier to implement and more in concert with APS sys-
tems. Under a constant safety-stock policy, we elim-
inate the time index from the safety-stock portion of
the base-stock target:

B�t�=
t+SI+T+R−1−S∑

s=t+1
�s + SS�

Under a fully adaptive base-stock policy, we might
be able to express SS�t� in terms of demand-
distribution parameters. In particular, under nor-

mal demands, setting SS�t� = z ·
√∑t+SI+T+R−1−S

s=t+1 �2s
achieves the Type I service level corresponding to z in
each review period of length R. Under constant safety
stock, however, we again use a search procedure to
find the constant value that makes the composite ser-
vice level over an inventory cycle sufficiently high.

Demand Smoothing
The above models assume that, although a stage
might incur a demand during each period, it receives
a single replenishment order each review period.
Therefore, upstream demand can easily become very

spiky. An inventory manager might want to review
only periodically, yet propagate a smoother demand
stream by requesting a sequence of deliveries that
is evenly spaced over time. Such smoothing might
reduce cycle stock at the stage in question, reduce
safety-stock requirements of upstream stages, and
offer other benefits such as even production loading.
This section extends the GSM framework with a sim-
ple version of smoothing.
Although one might imagine myriad variations of

smoothing, our simple approach requires just one
additional input parameter that we refer to as ", the
replenishments-per-review period. We assume that at
each review period, a stage calculates a total order
quantity as in Equation (4), but divides this quantity
into " equally sized fractional orders due at equally
spaced intervals, with the first due a service time from
the current review period. Consequently, we require
that " be a factor of R for each stage; we can relax this
factor assumption somewhat, at the expense of addi-
tional algebra. We assume that the upstream stage is
largely unaware of the smoothing. More specifically,
although the supplier knows the timing of orders, it
does not or cannot exploit the equality in size of "
consecutive orders. It essentially acts as if its customer
has a review period of R/".
The inventory balance equation is now

I�t� = B�t− SI − T − x′�t�− �R− 1��
− d�t− SI − T − �R− 1�− x′�t�� t− S�

+ "�t�

"
· d�t− SI − T − �R− 1�− x′�t��

t− SI − T − x′�t�+ 1�
+ "�t�

"
· #B�t− SI − T − x′�t�+ 1�
−B�t− SI − T − �R− 1�− x′�t���� (5)

where "�t� = 
x′�t�/�R/"�� and x′�t� = �t − SI − T −
�− �R−1��modR. The first term is the base-stock tar-
get of the most recent review period whose sequence
of fractional orders has been completely supplied.
The second term functions similarly to the inventory-
exposure term of Equation (1); it includes demands
that are due but are not yet fully replenished. Its first
argument, t − SI − T − �R− 1�− x′�t�, corresponds to
the former review period, and the latter, t− S, to the
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most recent demand that is due. The third and fourth
terms of Equation (5) correspond to fractional orders
already received from the current incoming sequence.
The numerator, "�t�, is the number of such fractions
already received, and the ratio "�t�/"= 1 for the first
time in an inventory cycle when x′�t� = ��" − 1�/"� ·
R+1, on arrival of the "th and final fraction. The sec-
ond factors of the third and fourth terms, those mul-
tiplied by "�t�/", define the bulk order calculated per
Equation (4) for the current incoming sequence, and
so consist of demand incurred over the corresponding
review cycle and a base-stock adjustment.

Application at Celanese
Celanese is the world’s largest producer of acetyl
products, including acetic acid monomer, vinyl
acetate monomer, and polyacetal products. It is also
a leading global producer of high-performance, engi-
neered polymers for consumer and industrial applica-
tions. A key factor in Celanese’s success has been its
hybrid business model of producing chemical build-
ing blocks, derivative products, and engineered fin-
ished products, instead of focusing on one market.
The company, which had net sales of $6 billion in
2005, is organized into four business segments.
The end-to-end supply chain at Celanese is complex

and vast. It stretches from natural gas raw materials
to basic chemicals to advanced polymers. If the sup-
ply chain is divided on the basis of the dimension
of business control, it resembles three production–
distribution networks, each serving global demand
for its own products as well as internal processes that
utilize the product as the main material source for
a totally different downstream product. For instance,
acetic acid is used to produce vinyl acetate; in turn,
vinyl acetate is the main ingredient of polyvinyl
alcohol (PVOH). This end-to-end supply chain has
over 3,000 stages if we consider all the late-stage
differentiation for PVOH. Within this supply chain,
material typically moves in large quantities because
of economies of scale and transportation schedules.
Although the actual production times are smaller than
transportation times in the supply chain, distribution
of goods in a global environment exposes the real-
ity that transportation modes have defined schedules
of operation. This intermittent behavior is also appar-
ent in customer orders: they are typically batched and

timed with weekly, biweekly, or monthly frequencies.
Looking at the processing times independent of the
ordering frequency would not accurately represent
the inventory dynamics of the supply chain.
In this section, we illustrate the significance of

our review-periods functionality to appropriately
modeling the dynamics of Celanese’s supply chain.
We begin by describing the acetic acid supply
chain; acetic acid is the primary product offering
of the Chemical Products business segment, which
is responsible for 71 percent of Celanese’s 2005 net
sales. We describe the chain as a whole, as mod-
eled in PowerChain Inventory, and then we analyze
a stylized reduction of the chain in more depth.
This section includes two figures from the PowerChain
Inventory user interface. A square box or icon cor-
responds to a stage (recall that an arc defines only
a precedence relationship between stages). In addi-
tion, a triangle next to a stage indicates the pres-
ence of safety stock. By default, the review period at
each stage is 1, a single base time unit. A user may
“enable” review-periods functionality on a stage-by-
stage basis, and for each stage so activated, enter a
review period (R), offset (�), and replenishments per
review-period parameter (").

Acetic Acid Supply Chain
Acetic acid is a building block for a variety of indus-
trial products, including colorants, paints, adhesives,
coatings, plastics, medicines, cosmetics, detergents,
textiles, and fragrances. Figure 3 models the entire
end-to-end supply chain.
Stages in the supply chain correspond to vendors

supplying a liner used to transport the acetic acid,
manufacturing sites producing acetic acid, transporta-
tion modes moving product, warehouses storing acid,
and geographically specific demand locations. There
are four manufacturing sites. U.S. locations are in
Pampa and Clear Lake in Texas and Calvert City in
Kentucky; there is also one plant in Singapore. These
plants supply several echelons of storage locations in
Asia, Europe, and the Americas. Transportation stages
correspond to rail, barges, trucks, and ocean vessels.
A downstream storage facility is commonly served by
multiple upstream facilities, as well as directly from a
manufacturing site.
There are 90 stages and 94 links in the supply

chain. The base time unit is one day. The longest stage
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Figure 3: The graphic shows the end-to-end Celanese acetic acid supply chain as modeled in PowerChain
Inventory.
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time path through the network is 50 days. Of the
90 stages, 34 enable review periods. Enabled review
periods range from three to 30 days; review-period
offsets range from two to 26 days. Review periods are
associated with all of the storage locations and some
of the demand locations. A review period at a storage
location reflects the fixed schedule of the supplying
transportation mode.

Analysis of Stylized Chain
We have extracted a subset of the stages in the sup-
ply chain to demonstrate the significance of review
periods more clearly (Figure 4).
To protect company confidentiality, we have dis-

guised the data in the supply chain; in addition,
reducing the supply chain from 90 to 14 stages
eliminates some detail. In particular, we aggregated
demand at each location into one demand class;
in reality, there can be multiple demand classes seg-
mented by customer and by use. Each manufacturing
and storage location is now sole sourced. However,
the resulting chain still reflects Celanese’s business.
The supplier stage provides the transportation liner

to the manufacturing site that produces acetic acid.
The manufacturing site serves some demand directly
and also supplies the central warehouse, which ships
to two customer regions by boat. Region 3 sup-
plies an additional storage location that serves the
region’s demand. The port warehouse in region 1
supplies region 2’s warehouse by sea plus its own
satellite warehouses by rail and truck. There are five
demand stages—one for each of the regional ware-
houses and one for demands that are placed directly
on the manufacturing site. These five stages charac-
terize the demand-generation process rather than a
physical operation, so their stage costs are zero, stage
times are zero, and they quote service times of zero.
Daily demand at each demand stage has mean and

standard deviation of 500,000 metric tons. The tar-
get service level at each demand stage is 95 per-
cent, and the annual holding-cost rate at each stage
is 25 percent. Each stage has only one replenishment
per review period and employs the constant safety-
stock model, which mimics Celanese’s actual business
practice.
The review periods do not nest or follow any

other apparent structure. The warehouses supplied by

region 1’s port warehouse, review more frequently
than its port warehouse, whereas the regional ware-
house in region 3 reviews less frequently than its port
warehouse. The supplier to manufacturing reviews
every three days, and manufacturing itself reviews
every day.
To assess the importance of correctly modeling

review periods, we present numerical results for two
models. The review-periods model (RPM) employs
the data in Table 2 and the modeling approach we
outlined in the Extension for General Review Periods sec-
tion to determine the inventory levels and locations
across the supply chain. The consolidated time model
(CTM) ignores the distinct effects of review periods.
For each stage, the CTM simply adds the review
period minus one to the stage time in Table 2 to pro-
duce a new stage time. The base time unit is assumed
to be the common review period of all stages, and the
algorithm from GW is run.
Table 3 summarizes the inventory metrics for the

RPM, and the triangles of Figure 4 indicate the cor-
responding inventory locations. Table 4 summarizes
the inventory metrics for the CTM; the CTM’s calcu-
lated stage time is also included as an extra column
in Table 4.
Inventory levels from the CTM differ significantly

from those of the RPM. The RPM has 51 percent less
safety stock than the CTM, but its on-hand inventory
of cycle and safety stock is 32 percent greater than that

Stage Stage Review Review-periods
Stage name cost ($) time period offset

Central warehouse 0.05 1 1 0
Demand—manufacturing 0.01 0 1 0
Demand Region 1A 0.01 0 1 0
Demand Region 1B 0.01 0 1 0
Demand Region 2 0.01 0 1 0
Demand Region 3 0.01 0 1 0
Manufacturing 0.25 5 1 0
Region 3 regional warehouse 0.05 2 14 3
Ship Region 1 port warehouse 0.25 19 14 10
Ship Region 2 warehouse 0.05 3 3 0
Ship Region 3 port warehouse 0.20 7 10 7
Supplier 0.50 5 3 0
Warehouse Region 1A 0.05 3 7 4
Warehouse Region 1B 0.05 4 7 3

Table 2: The data in the table show the disguised cost and lead-time data
of the stylized chain.
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Safety-stock Cycle-stock Pipeline-stock Service Net-replenishment
Stage name inventory inventory inventory time lead time

Central warehouse — — 2�000�000 1 0
Demand—manufacturing — — — 0 0
Demand Region 1A — — — 0 0
Demand Region 1B — — — 0 0
Demand Region 2 — — — 0 0
Demand Region 3 — — — 0 0
Manufacturing 6�632�384 — 12�500�000 0 12
Region 3 regional warehouse 2�254�464 3�250�000 1�000�000 0 32
Ship Region 1 port warehouse 3�488�128 8�250�000 28�500�000 0 33
Ship Region 2 warehouse 1�346�528 500�000 1�500�000 0 5
Ship Region 3 port warehouse — 2�500�000 3�500�000 17 0
Supplier — 2�500�000 12�500�000 7 0
Warehouse Region 1A 1�296�128 1�500�000 1�500�000 0 9
Warehouse Region 1B 1�406�720 1�500�000 2�000�000 0 10

Table 3: We show inventory levels by stage with review periods enabled.

of the CTM, which has no cycle stock. Finally, the sum
of on-hand inventory and pipeline stock is 30 percent
higher in the CTM than the RPM. We expect these
qualitative results to hold in general. Because review
periods increase upstream demand variability and
introduce cycle stock, which contributes less directly
to service than safety stock, a model that accurately
represents their dynamics should have greater on-
hand inventory than a model that simply consoli-
dates time. On the other hand, the latter approach will

Supplier Manufacturing

Demand—
manufacturing

Central
warehouse

Ship Region 1
port warehouse

Ship Region 3
port warehouse

Ship Region 2
warehouse

Region 3
regional warehouse

Warehouse
Region 1A

Warehouse
Region 1B

Demand
Region 1A

Demand
Region 1B

Demand
Region 2

Demand
Region 3

Figure 4: We show a 14-stage version of the acetic acid supply chain.

quote excessive pipeline stock, which is proportional
to stage times and mean demands.
Although the above inventory-level discrepancies

stem primarily from the different single-stage inven-
tory dynamics of the models, the discrepancies can
lead to different supply chain stocking strategies.
For all stages including and downstream of the cen-
tral warehouse stage (CW), both models report the
same optimal locations, albeit with different inven-
tory values. The port warehouse in region 1 holds a
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Safety-stock Cycle-stock Pipeline-stock Service Net-replenishment Stage
Stage name inventory inventory inventory time lead time time

Central warehouse — — 2�000�000 13 0 1
Demand—manufacturing 2�848�970 — — 0 12 0
Demand Region 1A — — — 0 0 0
Demand Region 1B — — — 0 0 0
Demand Region 2 — — — 0 0 0
Demand Region 3 — — — 0 0 0
Manufacturing — — 12�500�000 12 0 5
Region 3 regional warehouse 5�455�362 — 7�500�000 0 44 15
Ship Region 1 port warehouse 9�555�736 — 48�000�000 0 45 32
Ship Region 2 warehouse 1�839�002 — 2�500�000 0 5 5
Ship Region 3 port warehouse — — 8�000�000 29 0 16
Supplier — — 17�500�000 7 0 7
Warehouse Region 1A 2�467�280 — 4�500�000 0 9 9
Warehouse Region 1B 2�600�742 — 5�000�000 0 10 10

Table 4: We show inventory levels by stage when review periods are simply added to stage times.

decoupling safety stock that pools the demand vari-
ability from regions 1 and 2. The port warehouse
in region 3 does not hold safety stock. Instead, the
regional warehouse pools the demand variability over
the time that elapses between the CW and region 3
regional warehouse.
The policies upstream of the CW differ. For the

RPM, manufacturing holds a decoupling safety stock
sufficient to buffer demand from all regions plus its
direct demand, over the review period and stage
times that are associated with both the supplier and
manufacturing stages. In contrast, for the CTM, the
safety stock at manufacturing addresses only the vari-
ability of its direct end-item demand. In turn, the
decoupling stocks at the region 1 port warehouse and
the region 3 regional warehouse cover stage times
from the supplier and manufacturing stages, as well
as the CW. For the CTM, these two warehouse stages
would have significant net-replenishment lead times
even if manufacturing quotes a service time of zero.
Because the majority of cost accrues before manu-
facturing, increasing safety stock at the warehouse
stages is more economical than forcing manufactur-
ing to cover all the demand variability in the supply
chain, even over its relatively short net-replenishment
lead time.
In general, we have seen that chains that have

review periods enabled tend to hold more inven-
tory upstream in the supply chain, as in the styl-
ized Celanese chain. If the changes in both demand

variability and timing are not rigorously justified, it
is often beneficial to hold no upstream inventory and
effectively add the lead time from the upstream stages
to downstream stages that are already pooling across
time and demand locations.
An alert modeler might readily address shortcom-

ings of the CTM, but basic observations would likely
go only so far. Because pipeline stock is directly pro-
portional to stage time, one could correct the CTM
excess through the ratio of the true stage time to the
CTM-inflated stage time. On the other hand, inter-
actions among safety stock, cycle stock, and input
model parameters are isolated less easily. Even if
one could infer a reasonable cycle-stock value, the
appropriate reduction of safety stock would remain
unclear because the relationship between cycle stock
and service is unclear. Indeed, complications of this
nature led to our use of search algorithms for base-
stock targets. Furthermore, average cycle stock is not,
in general, half the demand over a review cycle.
Rather, it depends on the timing of outgoing demands
and incoming replenishment. For example, a stage
receiving intermittent demand can avoid cycle stock
entirely if its replenishments coincide with demand
due dates.
To this point, we note that the review-periods

model adds a new dimension to the optimization—
that of coordinating service times to reduce cycle
stock; however, the CTM is blind to cycle stock.
For the 14-stage chain we considered here, the CTM
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outputs a very reasonable policy; plugging its ser-
vice times into the review-periods model increases
on-hand cost by only 3.87 percent. However, an exam-
ple of just two stages can illustrate that such policy
quality does not necessarily hold.

Conclusion
We incorporate stage-dependent review periods in
the guaranteed service, supply chain modeling frame-
work in a manner that addresses numerous real-
world complications. We do not constrain the review
periods across a supply chain to a well-behaved struc-
ture or pattern. In addition, our framework accom-
modates a variety of operating policies, including
constant base-stock targets, constant safety-stock tar-
gets, and adaptive base-stock targets, as well as a
variation of demand smoothing. As a form of vali-
dation, we analyze the Celanese acetic acid supply
chain, which entails some of these complications. The
review-periods model yields inventory metrics that
differ by more than 30 percent relative to the simpler
approach of adding the review period to the stage
time.
In practice, we have extended the presentation here

to several other real-world complications, including
general acyclic networks, stochastic lead times, and
time-phased demand. We are currently developing
extensions to alternative service metrics and batch
ordering. Although these capabilities enhance appli-
cability of the modeling framework, we excluded
them from this paper to focus on the problems that
review periods pose.
We close by noting several remaining questions.

First, the smoothing extension of the Demand Smooth-
ing section is just one of many possible models of
this potentially complicated behavior. This capabil-
ity remains new, and we await feedback on its gen-
eral applicability. In addition, we suspect that more
refined approximation schemes could further improve
the accuracy of optimization under review periods. In
particular, chains with adaptive policies and unstruc-
tured review periods remain sensitive to the circular-
ity issue noted in the Optimization section. Finally, the
computational expense of evaluating a chain grows
with the cycle lengths 	in and 	out, and, in turn, large
chains or chains without nested review periods can

become computationally burdensome. Evaluation of
a candidate base-stock target currently entails calcu-
lating the service level at each period of the cycle.
We have begun researching several approximation
schemes that show initial promise for streamlining the
calculations.

Appendix 1

Reviewing the GSM Framework
This section presents an overview of the modeling
assumptions, inventory dynamics, and mathematical
programming formulation of the GSM framework.
The formulation in this section follows the notation
in Graves and Willems (2000).
GW assume that the supply chain can be repre-

sented as a network with node set N and arc set A.
Each stage in N corresponds to a process at the end
of which we might hold inventory, and the arc set A
defines the precedence relationships among stages. In
particular, a transportation process is modeled as a
stage, not an arc. A stage does not necessarily corre-
spond to a specific facility within the physical supply
chain. Depending on the level of granularity required,
individual stages might represent intermediate inven-
tories within a single plant, or a single stage might
justifiably aggregate several physical locations.
Each stage j∈N has a deterministic processing time

Tj and follows a periodic-review, constant base-stock
policy. All stages have the same review period that
equals the base time unit of the model. External
demand originates only at stages with no outgoing
arcs; external demand arrives each base time unit,
and the demands over time are stationary and inde-
pendent. Under a base-stock policy, at each review
period a stage orders to reset its inventory position,
which includes both on-hand and on-order inven-
tory, to a precalculated base-stock target. When the
targets are constant, each stage simply orders the
demand placed on it since it last reviewed, and exter-
nal demand thereby immediately propagates across
the chain, although it might be inflated through bill-
of-materials (BOM) multipliers. Specifically, dj�t�, the
demand received by stage j over time t, is calculated
as dj�t� =

∑
k � �j� k�∈A �jkdk�t�, where �jk is the number

of units from stage j required to produce one unit of
output at stage k.
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Perhaps most critically, GW also assume guar-
anteed service and bounded demand. Demand is
bounded at each stage j in the sense that for any
relevant length of time � (and arbitrary time t�,
there is a known bound Dj��� such that Dj��� ≥∑�

s=1 dj�t+ s�. Next, each stage j quotes an outbound
service time Sj to its immediate customers such that it
will deliver exactly dj�t� at time t+Sj . GW and Graves
and Willems (2003) discuss these key assumptions in
much greater detail.
GW balance the stage j net inventory level as Ij �t�=

Bj − dj�t − SIj − Tj� t − Sj�, where Bj is the stage j

base-stock target, SIi is its inbound service time, and
dj�t1� t2� =

∑t2
s=t1+1 dj�s�. The order stage j places at

time t arrives in inventory at t + SIj + Tj . Equiv-
alently, the last replenishment received by time t

was placed at t − SIj − Tj . Similarly, the last demand
served by stage j by time t was placed at t − Sj .
Therefore, at each time, the inventory is exposed to
SIj + Tj − Sj periods of demand. This constant expo-
sure length is referred to as the net-replenishment lead
time. To achieve guaranteed service with minimum
inventory, GW set the base stock to the demand
bound corresponding to the net-replenishment lead
time, that is, Bj = Dj�SIj + Tj − Sj�. To model a sup-
ply chain given guaranteed service times Sj , they
link stage-inventory balances by propagating demand
upstream through the arc multipliers �jk, determining
a demand-bounding function Dj��� for each stage j ,
and calculating an inbound service time SIj to each
stage j as SIj =maxi � �i� j�∈A�Si�.
GW propose a deterministic, dynamic program to

minimize the holding cost incurred across a supply
chain that is modeled within the GSM framework as
a spanning tree. Specifically, they solve problem (P):

�P� min
�N �∑
j=1

hj · #Dj�SIj + Tj − Sj�− �SIj + Tj − Sj� ·�j�

s.t. Sj − SIj ≤ Tj ∀ j∈N�

SIj − Si ≥ 0 ∀ �i� j�∈A�
Sj ≤ sj ∀ j� ∃k∈N � �j� k�∈A�
Sj� SIj ≥ 0� integral ∀ j∈N�

where hj is the stage j holding cost, sj is a bound
on the outbound service time that a demand stage j
can quote, and �j is the mean demand received per

period by stage j . The decision variables are the ser-
vice times Sj and SIj , and they affect inventory lev-
els and locations. The first set of constraints ensures
nonnegative net-replenishment lead times, and the
second set enforces the definition of inbound service
time. GW describe a functional equation for the cost
over a subtree in terms of the optimal costs for the
subtrees connected to a single stage. Each subproblem
of their dynamic program optimizes over a single ser-
vice time by iteratively evaluating this equation, and
the dynamic program entails �N � subproblems.

Appendix 2

Computational Study of Five-Stage Serial Supply
Chains
This appendix summarizes a computational study
on the accuracy of the optimization approximations
described in the Extension for General Review Periods
section. We consider 189 permutations of the five-
stage serial-line supply chain that Figure A.1 depicts.
End-item demand originates at stage 5. Daily

demand at stage 5 is characterized as a normally dis-
tributed random variable with average and standard
deviation equal to 100. Across all permutations, the
service level at stage 5 is 95 percent, the holding-cost
rate at all stages is 35 percent, and each stage has one
replenishment per period.
The 189 chains represent the permutations of three

cost-accrual profiles, three lead-time profiles, and
21 review-period profiles. The direct costs added
per unit at stages 1 through 5 under the three cost
profiles are �$10�$4�$3�$2�$1�� �$4�$4�$4�$4�$4�,
and �$1�$2�$3�$4�$10�. Similarly, the three time
profiles, in days, are �10�4�3�2�1�, �4�4�4�4�4�,
and �1�2�3�4�10�. The 21 review-period profiles,
also in days, comprise seven sets of three profiles:
starting, middle, ending, uniform, increasing, decreas-
ing, and random. The starting profiles [�2�1�1�
1�1�, �5�1�1�1�1�, �10�1�1�1�1�], middle profiles

1 2 3 4 5

Figure A.1: Five-stage serial-line supply chain used for numerical
analysis.
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[�1�1�2�1�1�, �1�1�5�1�1�, �1�1�10�1�1�], and end-
ing profiles [�1�1�1�1�2�, �1�1�1�1�5�, �1�1�1�
1�10�] have a single enabled review period. The
uniform profiles [�2�2�2�2�2�, �5�5�5�5�5�, �10�10�
10�10�10�] maintain the same review period across
the supply chain. The review periods of increas-
ing profiles increase upstream: [�16�4�4�4�2�,
�10�8�6�4�2�, �14�7�6�3�2�]. Similarly, the decreas-
ing profiles are [�2�4�4�4�16�, �2�4�6�8�10�, �2�3�6�
7�14�]. The random profiles [�2�4�16�4�4�, �10�6�
4�8�2�, �7�14�3�2�6�] follow no predictable pattern.
In the presence of review periods, the Extension

for General Review Periods section defines the operat-
ing characteristics and optimization problem for sup-
ply chains operating a constant base-stock policy, an
adaptive base-stock policy, and a constant safety-stock
policy. Table A.1 compares the performance of the
optimization approach we described in the Extension
for General Review Periods section against exhaustive
enumeration for each of the three policies.
We presented the first column of Table A.1 in the

Optimization section. We express the errors in terms
of the expected on-hand inventory cost, the sum of
expected safety stock, and expected cycle-stock costs.
For a single permutation, we calculate the approxima-
tion error as the absolute difference between the exact
solution and the approximate solution divided by the
exact solution. The conditional average error reflects
only those permutations with positive errors.
Recall that a stage under a constant base-stock pol-

icy orders at each review period demand observed
since it last reviewed. Consequently, such chains are
not subject to the circularity between service times

Constant Adaptive Constant
base-stock base-stock safety-stock
policy policy policy

Average approximation error (%) 1�27 3�01 6�87
Maximum approximation error (%) 16�82 76�49 55�87
Number of permutations where 131 92 92

error is zero
Number of permutations with 58 97 97

nonzero error
Conditional average 4�14 5�86 13�39

approximation error (%)

Table A.1: We show summary performance metrics for each of the three
inventory policies we presented in the Extension for General Review
Periods section.

Constant Adaptive Constant
Review-periods base-stock base-stock safety-stock
profile policy (%) policy (%) policy (%)

Start 0.42 0�29 0�29
Middle 0.28 0�60 0�30
End 0.19 1�02 1�66
Uniform 0.11 0�23 0�23
Increasing 2.40 3�47 4�88
Decreasing 3.68 4�47 21�92
Random 1.81 10�99 18�82

Table A.2: We show the average approximation error across all permuta-
tions that correspond to the associated review-periods profile.

and propagated demand that we noted in the Exten-
sion for General Review Periods section, and their rel-
atively superior performance is not surprising. We
do not yet understand the markedly better accuracy
under fully adaptive policies versus constant safety-
stock policies, although we can attribute the perfor-
mance gap primarily to the decreasing and random
review-periods profiles. Table A.2 disaggregates the
average error results by review-period profile; similar
disaggregations over cost and time profiles reveal no
obvious trends.
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Todd Carter, director of global supply chain at
Celanese, writes: “Celanese has been a Six Sigma com-
pany since 1997 and supply chain has been Six Sigma
since 2002. We are a data driven company and we
needed a tool that understood that. Our old inven-
tory optimization planning consisted of linked Excel
spreadsheets and the Solver tool. The results were not
always accurate and it was very hard to update actual
targets. Furthermore, our old tool used monthly data
instead of daily data.
“We knew already through our Six Sigma work

that using daily numbers was more important. We
needed to set our inventory targets more frequently;
therefore, we needed a tool to reduce the cycle time
of setting inventory targets. Finally, we had never

proved to the business that our targets were optimal.
Optiant PowerChain allows us to do this.
“We have built an Optiant model for every

molecule that we sell. It is a global model, under-
standing lead times, safety stock, points of manu-
facture, points of consumption, and planned service
levels. The tool provides us with a fully costed supply
chain. We are able to see where inventory and its costs
accumulate. We also understood our lead time and
lead time variabilities across our manufacturing and
transportation lanes. We are also able to model our
demand variability by region. This would not have
been possible if we could not exactly model the oper-
ational limits of our supply chain. In particular, differ-
ent locations have different capacity to hold inventory
and these different locations have different restocking
frequencies.
“We have had a significant reduction in inven-

tory using Optiant. Prior to using Optiant, we were
already on an inventory decline as a function of sales.
Optiant accelerated that decline. We also and very
importantly were able to simultaneously improve fill
rates. That is, we were able to enter planned service
levels in Optiant and we then met those fill rates
when we implemented the targets.
“Because Optiant’s tool matches the realities of the

chemicals business, it has become an accepted way to
make supply chain decisions in Celanese.”
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