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In 2007, Intel’s Channel Supply Demand Operations launched an initiative to improve its supply chain per-
formance. To ensure success, the process had to fit within the existing planning processes. In practice, this
meant that setting service-level and inventory targets, which had previously been external inputs to the pro-
cess, had to become part of the structured decision-making process. Although other Intel business units had
achieved success implementing a multiechelon inventory optimization model, the boxed processor environment
posed some unique challenges. The primary technical challenge required correcting for the impact of forecast
bias, nonnormal forecast errors, and heterogeneous forecast errors. This paper documents the procedure and
algorithms that Intel developed and implemented in 2008 to counter the impact of forecast imperfections. The
process resulted in safety stock reductions of approximately 15 percent. At any given time, Intel applies this
process to its 20-30 highest-volume boxed processors, determining an on-hand inventory commitment between

$50 million and $75 million.
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Since 2005, Intel has used more rigor in its in-
ventory-planning processes, as manifested in two
ways. First, Intel has improved its processes by
developing an integrated sales, inventory, and oper-
ations process (SIOP). Second, it has improved its
decision-support technologies by integrating multi-
echelon inventory optimization with its supply chain
planning solvers.

The SIOP process must operate within the con-
straints of Intel’s existing organizational responsibility
structure. In particular, the sales and marketing orga-
nization is responsible for entering the forecast data
that are so critical to any SIOP process. At Intel, three
forecasting problems—forecast bias, heterogeneity of
errors, and nonparametric residuals—have nontrivial
impacts on the output of its optimization models. Tra-
ditional forecasting textbooks, including Crum and

Palmatier (2003), Franses (1998), and Montgomery
et al. (1990), recommend addressing these problems
prior to loading data into an optimization model.
However, as Manary and Willems (2008) document,
planners cannot always remove bias from the raw
forecast data, especially when groups that do not
reside in the supply chain organization have loaded
the data.

From a decision-support perspective, it was nec-
essary to address the three forecasting problems.
Intel began with forecast bias. In an unbiased fore-
cast, the forecast residuals, found by subtracting the
period’s forecast from actual demand, have a zero
mean; in a biased forecast, the mean is nonzero. Based
on the Intel experience that Manary and Willems
(2008) cover, we expected bias to be the dominant
error behavior to correct. Unfortunately, heterogeneity
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(i.e., the errors could not be characterized by a single
probability distribution) and nonparametric behavior
(i.e., errors could not be characterized by a stan-
dard probability distribution) error structures compli-
cated solutions to Intel’s boxed central processing unit
(CPU) forecasts and required a more rigorous solu-
tion than bias alone would need. By addressing these
forecasting-process problems, Intel could quantify the
impact of service and inventory changes as part of its
SIOP process. Our approach, which Intel uses today,
addressed these issues.

Methodological Contribution

Manary and Willems (2008) proposed a way to cor-
rect for forecast bias in inventory optimization models
without altering the raw demand signal. Their adjust-
ment procedure provided the necessary improvement
required for Intel management to implement multi-
echelon inventory optimization (MEIO) models for its
embedded processor division; the result was a signif-
icant reduction in aggregate inventory in comparison
to the prior policy, a weeks-of-inventory strategy
with management selecting the target number of
weeks. The adjustment procedure was conditioned
on assumptions that forecast bias was stationary and
service levels were predetermined. Intel’s Channel
Supply Demand Operations (hereafter referred to as
Planning), a division with approximately $5 billion
in annual boxed CPU sales to distributors, runs sim-
ilar MEIO models; its business processes also do not
allow the supply chain organization to alter the raw
forecast data, which the Sales and Marketing Group
controls. However, the boxed CPU procedure has
one fundamental process difference: service levels are
dynamic and optimized as a function of a single
demand variance estimate for all service levels. This
negates direct application of the embedded processor
division’s adjustment procedure, which determines a
demand variance estimate for each service level.

Our solution to this problem builds upon the ad-
justment procedure in Manary and Willems (2008) by
combining it with Bartlett and Kendall’s (1946) meth-
ods for testing heterogeneity of independent sample
variances. This solution relies principally on applying
the adjustment procedure to extract a random sam-
ple of variance estimates for a single product across

multiple service levels. If we detect no significant dif-
ference in variability estimates, we apply a weighted
proxy of variability through the root mean of the
collective adjustment procedure at the sampled ser-
vice levels. We treat stock-keeping units (SKUs) with
significant differences in variability by using a kernel-
smoothing technique that accounts for both hetero-
geneity and nonparametric error distributions, and
generates a single estimate of variability.

This paper presents the solution that Planning de-
veloped to determine the joint SKU-location safety
stock and service-level targets in the presence of
forecast bias, nonnormal forecast errors, and fore-
cast error heterogeneity by reparameterization of the
estimate of the standard deviation of forecast errors.
Since Intel implemented this process in early 2008, the
process has maintained the high service levels affili-
ated with prior MEIO models; simultaneously, it has
reduced total corresponding boxed CPU inventory
levels by approximately 15 percent.

Intel’s Channel Products Group

Intel’s Channel Products Group (for which Plan-
ning manages supply and demand coordination) sells
boxed CPUs in unique finished goods SKUs that are
differentiated by CPU design, boxing material, and
warehousing location. The data that this paper dis-
plays come from over a year of weekly forecasts
of approximately 20 high-volume boxed CPUs that
represent Intel’s mobile, desktop, and server CPU
businesses.

The boxed CPU supply chain is similar to a stan-
dard reseller’s supply chain but includes no product
manufacturing. Instead, the supply chain modeling
focuses on boxing processes and distribution. Each
SKU is modeled as a worldwide distribution network
of packaged and unpackaged finished goods CPUs
that consist of three echelons with multiple physical
locations. CPU manufacturing echelons are beyond
the scope of Planning’s distribution network problem.
The stages of the supply chain include component
warehousing facilities; assembly facilities that box the
CPUs and package them with other components, such
as fans and heat sinks; and location-specific distribu-
tion centers that serve end customers. SKUs share a
common supply chain in both echelon structure and
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Figure 1: The graph depicts the three echelons in Intel’s boxed CPU dis-
tribution network model.

number of stages (Figure 1). By echelon, the boxed
CPU distribution network has (1) one virtual com-
ponent stage that represents nonboxed, finished CPU
inventory from Intel’s factory network, (2) four stages
in boxing and kitting assembly stages, and (3) five
stages in geography-specific distribution centers. The
MEIO model generates inventory targets for between
200 and 300 SKU locations every month.

The planning organization monitors inventory lev-
els weekly; a major reset, which is driven by a new
forecast from the sales and marketing organization,
occurs monthly. Based on the new demand informa-
tion, the monthly planning process resets the forward-
looking demand at the SKU-location level. This reset
modifies the current optimized safety stock targets;
the targets feed an Intel-developed Systems Appli-
cation and Products (SAP) advanced planning and
scheduling (APS) optimizer that minimizes produc-
tion costs, lost-sales costs, and costs for deviating
from the inventory targets. The APS optimizer out-
put is the constrained production and inventory plan,
which constitutes the finalized factory schedule.

Addressing the Breakdown with
Intel’s Approach

Although operating parameters, such as transit
times, are essentially identical across SKUs, forecast

N
a
o

N
o
o

150

100

0 10 20
Forecast bias (%)

Increase in sigma (%)
[4))
o

o

Figure 2: A squared error standard deviation estimate grows exponentially
as we introduce bias into the forecast. At a 20 percent forecast bias, the
sigma generated from a sum-of-squared-errors approach more than dou-
bles the estimate generated when bias is absent.

accuracy and forecast error homogeneity differ signif-
icantly. In the past, Planning’s optimization process
relied on the commonly employed standard devia-
tion of forecast error (SDFE) calculation to provide the
demand variability input,

~ | i (F— A)?
Osprg = 171 1 ’ 1)

where F and A are the paired forecast and actual
demand, respectively, for a period i. Equation (1) is
influenced by any bias and (or) heterogeneity in the
relationship between the forecast and actuals (i.e., the
forecast errors). Figure 2 demonstrates how even small
amounts of bias result in a significant increase in the
calculated SDFE. The boxed CPU global forecast bias
exceeded 20 percent for products whose safety stock
targets were set using the optimization process.

Intel’s optimization technique relies largely on the
demand variance estimates to derive safety stock tar-
gets; therefore, the forecast bias naturally impacted
Planning’s modeling output. Figure 3 presents the
bias problem that Planning faced using the sales and
marketing forecasts. MEIO SKUs were collectively
overforecast more than 60 percent of the time; the
expected rate was 50 percent. Because Planning did
not initially address the forecast bias (Figure 3), we
can look at Figure 2 to understand how targeted
inventory and service levels differed from the levels
that Intel actually achieved.

Addressing the Boxed Processor
Forecast Bias

In 2005, Intel’s Communications Infrastructure Group
(CIG) encountered a similar problem with forecast
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MEIO product forecast error Forecast/(Forecast + Actuals)
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Figure 3: The graph shows the distribution of relative forecast errors, i.e.,
Equation (2), for boxed CPU MEIO products representing over 500 paired
observations. The distribution’s heavier right tail represents an overall
propensity to overforecast. At the SKU level, products displayed overfore-
casting bias, underforecasting bias, and no bias.

bias in its MEIO models. To solve its problem, CIG
implemented a modified estimate of the demand vari-
ation that Manary and Willems (2008) discuss. The
premise was to calculate a measure of relative forecast

accuracy,
Forecast;
1

= , 2
' Forecast; + Demand, @
and reconstruct from the pattern of error measure-
ments, whether biased positively, negatively, or unbi-

ased, a modified estimate of SDFE,

&Modified = Max |: [W} M, 0i| , (3)
te, ar

where =1 — a, 05 denotes the quantile point corre-
sponding to B8 from the distribution of s calculated in
Equation (2), tg 4 is the Student’s t-distribution with a
cumulative density of 8 and degrees of freedom com-
ing from the number of historical points from which
to draw, and w is the average demand. By treating

SDEFE as a function of service level, Equation (3) fac-
tors out the MEIO model impact of bias in the fore-
cast without changing the mean demand signal from
sales and marketing. That is, Equations (3) and (6) later
in the paper correlate negatively with bias. Because a
product is more likely to be overforecast, based on its
historical performance, the sigma estimates decrease,
thus telling the planning system to plan for less safety
stock (because the biased forecast already has “built-
in” safety stock). In extreme cases in which a prod-
uct has never been underforecast, the sigma estimate
is zero, thus signaling the planning system to gener-
ate no inventory for demand variability. If the prod-
uct has been underforecast historically, then the sigma
estimate is larger than it would be had no bias been
present. Products that do not display a bias either way
converge to the sum-of-squared-errors estimate. It is
worth noting that the method for calculating relative
forecast error in Equation (2) is largely arbitrary; any
number of forecast error measures would work. How-
ever, Equation (2) is a natural selection because Intel
planners are familiar with it. If a different error mea-
surement is used (e.g., centering the error on zero),
Equation (3) would need to be updated to reflect any
change in Equation (2).

Unfortunately, the modified sigma solution that
CIG employed was incompatible with the boxed
CPU optimization process because forecast errors
were heterogeneous, and service levels were selected
dynamically. CIG’s modified sigma solution requires a
stationary bias and was not robust to the heterogene-
ity present in the boxed CPU forecast error. In addi-
tion, boxed CPU service levels were determined using
a proprietary selection process that balanced inven-
tory costs, lost sales associated with different service
levels, and strategic management guidance. Although
the service-level selection process is beyond the scope
of this paper, its key attribute was that it required a
single constant estimate of demand variability to gen-
erate a single efficient inventory frontier prior to the
service-level selection.

Determining a Constant
Sigma Estimate

Similar to CIG, Planning needed a process to deter-
mine an SDFE estimate that would net out the forecast
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bias and heterogeneity without changing the sales
and marketing-loaded forecast. Using Equation (3)
was a natural first step; however, the equation’s
random-sampling approach across service levels to
approximate demand variability did not allow for
optimizing service-level selection under a stationary
sigma assumption. The goal then was to approximate
a single representation of demand variability from the
random sample generated by sigma modified, which
then allowed Intel’s third-party software to calculate a
single inventory efficient frontier; this aided Planning
in ultimately selecting the optimized service level.

Under a normal and unbiased forecast error as-
sumption, sigma modified will generate a random
sampling of the true sigma across each service level.
Therefore, it is a natural extension to treat sam-
ples independently and test for consistency of sigma
across the service levels. One complication with this
is that most variance equality tests are functions of
the underlying data populations; however, because
sigma modified is a calculation from one data point,
it lacks individual observations to determine compar-
ative statistics. This eliminated adapting a standard
F-ratio method or borrowing from approaches devel-
oped by O’Brien (1979), Levene (1960), and Brown and
Forsythe (1974), among others. However, Bartlett’s
F-test of homogeneity (Barlett and Kendall 1946) is
not a function of observations; it is determined by
the sigma estimates themselves. Therefore, Bartlett’s
approach was adapted to test homogeneity of the
sigma-modified sampling (Appendix B) across service
levels by simply replacing the variances from inde-
pendent samples with an array of sigma-modified esti-
mates drawn from different management-determined
service levels.

If Bartlett’s test (Bartlett and Kendall 1946) indi-
cated homogeneity across the service levels, then the
root mean square error (RMSE) of the sigma-modified
estimates was established as the point estimate of
demand variability for all service levels, thus enabling
Planning’s SIOP process to determine feasible service-
level and safety stock targets. In Figure 4, the variabil-
ity in the sigma-modified sampling for product A was
not significant enough to reject the null hypothesis
of equal variances across all service levels; therefore,
the pooled variance was used as the constant demand
variability parameter in the optimization process.

350

300

250 —

200 —

150 —

Sigma modified

100

50—

0 T T T T T
50 60 70 80 90 100

Service level

Figure 4: The graph shows sigma-modified estimates at given service lev-
els for CPU product A. Although sigma modified is obviously different for
each service level, per the adapted Bartlett’s variance test, the estimates
do not differ significantly.

We considered product A’s sigma-modified vari-
ability sampling, and thus its underlying forecast
error, to be well behaved (i.e., have no significant
bias and be generally homogeneous). Unfortunately,
the forecasting behavior of many boxed CPU prod-
ucts did not fit this description. Figure 5 demonstrates
our challenge in working with boxed CPU forecast
variability, as interpreted through sigma-modified
and relative forecast-accuracy histograms. The graphs
in Figure 5 illustrate both the lower 50 percent
underforecast error distribution and modified sigma
sampling at each service level for three products
that represent the forecast error behavior across all
boxed CPU products. For purposes of setting safety
stock, our interest is the propensity to underfore-
cast; therefore, we focus our forecast error analysis
on the lower 50 percent of forecast error occurrences
that represent the underforecast activity. In theory,
each product’s forecast error should follow a normal
distribution with measurements independent of one
another. In such a case, the histogram for the lower
50 percent forecast accuracy will also follow a one-
sided (tail portion) normal distribution, in which all
6 values from Equation (2) are 0.5 or less. For boxed
CPUs, such as product A, some product forecast error
follows approximately a normal distribution for the
lower 50 percent. Evidence of that lies with the sigma-
modified estimates at each service level that appear
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Figure 5: The graphs show sigma-modified sampling for errors and represent the worst 50 percent of underfore-
casts across service levels for CPU products A, B, and C. Intel describes the forecast error for product A as
homogeneous unbiased, product B as homogeneous biased, and product C as heterogeneous biased.

randomly distributed and pass a homogeneity test,
as we saw earlier. In contrast, product B displays a
bias to overforecast, as evidenced by the histogram of
forecast errors, which show that about half of what
should have been underforecasts were overforecasts.
The calculated sigma-modified values also reflect this
because the approximated sigma is zero for service
levels up through 75 percent. However, when forecast
errors begin to represent underforecasts, the modified
sigma values appear randomly distributed and stable,
and the product is considered to have a biased fore-
cast; otherwise, the error structure is normal beyond
the bias. Product C also displays some level of over-
forecast bias; however, because its extremely long tail
to underforecast breaks with normality, it drives an
increasing estimate of sigma as higher service levels
are desired. In this case, the product is considered
biased, heterogeneous, and nonparametric, as we will
see later.

Deriving a Normalized Point Estimate
of Sigma with Bias and Heterogeneity
Sigma modified is designed such that when bias to
overforecast is demonstrated, the estimate of sigma
is zeroed out (because a product that is habitually
overforecast will not need safety stock for demand

variability). Because of Bartlett’s natural log approach
(Bartlett and Kendall 1946), testing for homogene-
ity requires strictly nonzero estimates of sigma. Fig-
ure 5 shows how products B and C would clearly
fail the equal variance test on just the O-sigma fre-
quency that bias causes. Figure 6 shows a product
count breakdown of the full boxed CPU portfolio
behavior. Approximately 40 percent of the boxed CPU
SKUs displayed a significant degree of overforecast
or underforecast bias. However, Planning manage-
ment established a minimum allowable service level;
thus, we tested only sigma from service levels in the
top quartile. This allowed some SKUs with moderate

Bias present

No bias present

Figure 6: More than 40 percent of Intel’s boxed CPU SKUs demonstrated a
significant bias based on a binomial test at the « =5 percent level.
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bias to pass the homogeneity test. Some products for
which bias was not a factor failed because of hetero-
geneity or nonparametric error.

To allow Planning to run the SIOP process, an alter-
native to the pooled variance method needed to be
developed for the products that failed the homogene-
ity test. Any estimate developed needed to consider
four major factors: bias, heterogeneity, the potential for
nonparametric error, and the requirement that it be a
single variance estimate translated back to an assump-
tion of normality for the optimization software.

The initial approach, which Intel applied in produc-
tion in early 2008, was a minimum function of the
modified sigma based on both a relative error and
an absolute volume error, as Manary and Willems
(2008) outline. We knew in advance that this approach
would likely overstate a sigma estimate; however, we
were comfortable with a conservative estimate for
what we thought would be largely an exceptions pro-
cess. During the spring of 2008, the data showed that
almost half the boxed CPU products were failing the
homogeneity test. This meant that the sigma estimate
for failed tests would play a prominent role in estab-
lishing overall inventory targets and thus increase
the necessity for a more robust approach. Although
the initial approach applied in early 2008 typically
delivered a 30 percent reduction in a product’s vari-
ance estimate (versus a SDFE calculation in approxi-
mately 80 percent of the cases), the technique was not
an unbiased estimate of sigma and was susceptible
to significant overstatement because of heterogeneity
and nonparametric error structures. Our biggest con-
cern with the initial technique used in early 2008 was
that the sigma estimate was often driven by errors
that occurred at forecast levels significantly higher or
lower than the current forecast level (i.e., the fore-
cast driving the MEIO model). To correct for this,
we wanted to minimize the heterogeneity and (or)
nonparametric error impact by isolating a sigma esti-
mate close to the current forecast level. One chal-
lenge we faced in doing this was a relatively low
number of observations around the current forecast
level to draw on as a population. To compensate
for this, we decided to apply a weighting system
to forecast error observations with decreasing influ-
ence as error observations were further away from
the current forecast. Ultimately, we found that the

most robust technique for calculating sigma under
heterogeneous and nonparametric error was to apply
a nonparametric approximation of the product error-
density function across the full range of prior fore-
casts, allowing a kernel-smoothing technique to help
determine a weighted, localized error pattern. We
selected the kernel standard deviation based on Bow-
man and Foster’s (1993) recommendation and then
performed a bivariate normal kernel smoother. This
allowed us to weight the influences of prior forecasts
that were similar in volume to the current forward-
looking estimate and helped us to address the prob-
lem that the previous uniform weighting approach
had caused. Figure 7 presents the completed nonpara-
metric error-probability density function across the
history of prior forecasts for product C, a product
whose error pattern was seen to be biased, heteroge-
neous, and nonparametric.

The next step was to identify the error density
localized to the current forward-looking forecast. That
portion of the probability density function (PDF) usu-
ally defined at the forward-looking forecast becomes
the curve under which the new estimate of demand
variability is weighted. Figures 8(a) and 8(b) represent

Density

By 1
i f‘ﬁ\, 1
e

Figure 7: The graph shows CPU product C’s nonparametric error-density
field across all prior forecast levels. If the relative forecast error was nor-
mally distributed with no bias, we would see a bell-shaped “tunnel” lying
on the 0.5 error line. However, the error density for product C indicates
heterogeneity and nonparametrics.
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Figure 8: CPU product C’s forecast error density field (panel a) is localized at the current forward-looking forecast
of 1,708 units (panel b). The distribution localized at the current forecast level determines the product-level

sigma estimate.

CPU product C’s error density localized to the new
forward-looking forecast—1,708 units.

Having obtained an estimate of the forecast error
likelihood conditioned on a new forward-looking
forecast, the next step is to estimate the expected
underforecast and translate it into a singular normal-
ized parameter for the optimization software. In our
nonparametric case, we considered the underforecast
tail of the conditioned PDF (error values <0.5) and
computed the weighted average error in Equation (4).

_ ./‘00‘5 PﬁlForecast(g) *0do (4)
B CDFForecast (05) .

St

The integrated approach allowed us to weight across
the potential heterogeneity of the forecast error.
Figure 9 illustrates product C’s tail zone for under-
forecast error conditioned on the forward-looking
forecast.

6 now represents the weighted-average underfore-
cast error for product C conditioned on the current
forward-looking forecast. We can now reintroduce
Equation (3) to normalize the new weighted-demand
underforecast. Replacing 6, with 6, and replacing the
t-distribution with the average tail value from the
standard Normal distribution, generates a normalized

point estimate of demand variability back in the units
of the forecast,

SModified _ |: % ] W, 5)

where u is the forward-looking forecast. This approach
is similar to Bowman and Azzalini’s (1997) sugges-

0.07

0.06 —

0.05

0.04 —

Density

0.03

0.02

0.01 —

0 T T T T T
0.20 0.25 0.30 0.35 0.40 0.45
Error

Figure 9: The graph shows product C’s underforecast region PDF trun-
cated only to the values representing underforecasts (<0.50 error scores).
Under unbiased conditions, the cumulative probability under this curve is
50 percent. For product C, it is ~ 30 percent, thus indicating a bhias to
overforecast.
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tion of using a median absolute deviation as a more
robust sigma estimate when dealing with nonpara-
metric data. However, given the nonparametric nature
of Intel’s data, and to be conservative, we chose to
weight what otherwise would be considered outliers
under a median absolute deviation calculation. Equa-
tion (5), unlike (3), does not require a maximum cri-
terion because the continuous nature of the kernel
estimation will guarantee some positive density to
underforecast. Equation (6) will provide an additional
weighting that can drive the sigma-modified estimate
to zero because an extreme overforecast bias exists.

We have now addressed the heterogeneity at the
forward-looking forecast level but still need to ac-
count for the bias. We do that by considering the
propensity of the bias (either over or under) by
weighting Equation (5) with the modeled underfore-
cast likelihood against the expected underforecast
likelihood—that is, a ratio of the conditioned, under-
forecast cumulative distribution function (CDF) up to
a value of 0.5 and 50 percent, the CDF for the same
region under an unbiased assumption. If the forecast
error was unbiased, then this scalar would simply fall
out of the equation. If the bias is to overforecast, then
the new demand variability is decreased by a rela-
tive amount; if the bias is to underforecast, then the
new demand variability is increased proportionately.
Equation (6) represents the algorithm for determin-
ing the weighted point estimate of demand variability
conditioned on the forward-looking forecast for use
in the SIOP process.

0.5
~Modified « f() P6|Forecast(0) do

&Optimized =0 05 . (6)

It is worth highlighting here that if service levels are
deterministic, then we recommend skipping Equa-
tions (4)-(6) and using the alternative that Appen-
dix A shows.

Table 1 demonstrates the sigma estimate differences
for product C under Equation (6) based on the fore-
cast level. It also displays the more common SDFE
approach, Equation (1), to show readers the estimate
differences. Figure 10(a) gives the graphical represen-
tation of the sigma estimate from Equation (6) at a
given forecast level; Figure 10(b) shows product C’s
error-density field. Note how the Equation (6) sigma
estimate peaks at a forecast level of ~1,200 units,

Forecast level Equation (1) Equation (6)

Product C SDFE &Optimized
250 1,141 111
750 1,141 713

1,250 1,141 1,560

1,750 1,141 310

2,250 1,141 72

2,750 1,141 381

3,250 1,141 225

Table 1: The table shows product C’s kernel-smoothed, weighted sigma
estimate conditioned on a forecast level versus a more conventional root-
sum-of-squared-errors approach. Note that the weighted technique does
not guarantee a lower sigma estimate for every forward-looking forecast
level, even for a product that has an historical overforecast bias.

which corresponds with the historical, increased error
density to underforecast at that forecast level. In sim-
pler terms, our modified sigma estimate is negatively
correlated with bias.

Validating Kernel-Smoothed, Modified
Sigma Estimates

Our approach to validating the kernel-smoothed,
sigma-modified approach was threefold: it needed to
replicate a theoretical underlying variance estimates
for a constant relative variance, a constant unit vari-
ance, and a heterogeneous variance.

We first validated the kernel-smoothed, modified
sigma technique for the sigma of a well-behaved
(i.e., homogeneous, unbiased) forecast. We generated
a series of forecasts and randomly determined the
actuals around the forecast using a percent error rep-
resented by an N(0, 5%?) distribution. Equation (7), a
coefficient of variation (COV) that is the ratio of sigma
at a given forecast and the forecast, measures the rel-
ative error for our case:

0-|F0recast

COV= Forecast” @
With this approach, we were looking to see if the
kernel-smoothing technique could consistently repli-
cate the same 5 percent standard deviation across any
forecast level. Figures 11(a) and 11(b) display the fore-
cast error distribution that was randomly generated
for the purposes of validating and the COV at each
forecast level generated by Intel’s kernel-smoothing
technique.



o~
&, 1
.
o °
c wn
5 &
DL
© o
L
o S
=
©
=
>
22
23
Sp
O
o <
=
@ ©
n 2
© Q9
=
¥
O ®©
o2
£y
3s
>
QQ—
Ec
@2
S 3
52
e E
T O
02
o2
T ©
T
1]
0 £
c 2
e
o
==
— O
£ 3
o) O
= 2
a -
c
O o
°8
8 e
S =
o O
<E
w_
©
= C
e o
=
Q35
z-c
=<

Manary et al.: Correcting Heterogeneous and Biased Forecast Error at Intel for Supply Chain Optimization

424

Interfaces 39(5), pp. 415427, ©2009 INFORMS

Equation (7) sigma

0 T T T T T T
0 500 1,000 1,500 2,000 2,500 3,000

Forecast level

(b)
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0.8 —

0.7 4

7

I

0.6

X/
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0.2 T T T T T T
0 500 1,000 1,500 2,000 2,500 3,000
Forecast level

Equation (2)

0.5 —

0.4 —

0.3

Figure 10: The graphs illustrate product C’s new kernel-smoothed, weighted sigma estimate conditioned on a
forecast level and the forecast-density error field. As expected, the new procedure estimates its largest value for
sigma where (global max in panel a) the product has historically been underforecast most severely (i.e., density

around 1,200 in panel b).

After relative homogeneity, we tested unit homo-
geneity. In a similar fashion, we considered a series
of actuals that were normally distributed around a
forecast by a constant unit variance, regardless of fore-
cast value. Using the same arbitrarily chosen forecast
range from the test for relative homogeneity, we gener-
ated the actuals around the forecasts with an N (0, 25?)
error pattern. Figures 12(a) and 12(b) demonstrate
both the resulting randomly generated forecast error
pattern and sigma estimate from the kernel-smoothing

(a

=

0.54 —

Forecast/Forecast + Actuals

100 200 300 400 500 600
Forecast

technique. As desired, the kernel-smoothing approach
replicated the underlying variance pattern.

With constant relative error and constant unit error
validated, the final validation check was to see if the
smoothing technique could replicate a heterogeneous
error pattern, a particularly important aspect given
its intent to address SKUs that fail the homogeneity
test. Figure 13(a) represents a split-forecast error pat-
tern in which forecasts from 100 to 350 have a rela-
tive error structure of N (0, 5%?) and the relative error

(b)

cov
=
& 8§

1 1 I 1

N

0 T T T T T T
100 200 300 400 500 600

Forecast

Figure 11: Panel a depicts the Equation (2) forecast error that was randomly generated from an N(0, 5%?)
distribution. Panel b demonstrates the kernel-smoothed sigma appropriately estimated the underlying 5 percent

sigma across all forecast levels.
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(@) 0.64]

Forecast/Forecast + Actuals

T T L L
100 200 300 400 500 600
Forecast

b) 45

—

40

/N .\

Sigma mod weighted
N N
o (6]
[

T T T T
100 200 300 400 500 600
Forecast value

Figure 12: Panel a depicts the Equation (2) forecast error that was randomly generated from an N/ (0, 25?) distribu-
tion. Panel b demonstrates the kernel-smoothed sigma estimate, which appropriately estimated the underlying

sigma (25) across all forecast levels.

for forecasts above 350 are structured as N(0, 15%?).
Figure 13(b) demonstrates how the kernel-smoothing
technique tracks to the underlying error pattern.

In validating, we learned that a larger ker-
nel standard deviation estimate than Bowman and
Foster’s (1993) recommendation can sometimes result
in faster convergence to the true underlying sigma
when bias is present, but is otherwise homogeneous.
However, a smaller standard deviation estimate helps
minimize the transition lag of sigma-modified esti-
mates when variance is heterogeneous (e.g., in the
range of 300 to 400, as in Figure 13(b)), but the

(a) 0.60
0.58

@ 056

o ]

2 054

2 i

T 052

@ 0.50

o -

g 0.48

[T

S 0.46

8 044-

o T

S 0.42-
040 +—F—+—FT—"—F—"— 77—

100 200 300 400 500 600
Forecast

smaller kernel-smoothing standard deviation creates
higher variability in the sigma-modified estimate at
any given forecast level. Optimal standard deviation
estimate selection for the kernel-smoothing technique
provides an area of further research for Intel.

Optimized Targets Based on
New Modified SDFE

Since it implemented the modified sigma approach
in early 2008, Intel has seen safety stock inventory-

(b)

cov

0 T T T T T T
0 100 200 300 400 500 600 700

Forecast

Figure 13: Panel a depicts the Equation (2) randomly generated heterogeneous forecast error. Panel b demon-
strates the kernel-smoothed COV estimate, which appropriately estimated the underlying theoretical sigma (step

function) across all forecast levels.
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Figure 14: The graphs show representative snapshots of hoxed CPU inventory targets comparing the modified
sigma approach with a squared error standard deviation estimate. Panel a shows the overall reduction in both
variance and average weeks of inventory (WOI) targets; Panel b displays the inventory target under sigma mod-

ified relative to the squared error standard deviation.

level reductions of approximately 15 percent without
any reduction in customer service levels. Figure 14(a)
demonstrates a snapshot of its inventory targets in
the first half of 2008. Both average targets and target-
ing variability have been reduced. Figure 14(b) pro-
vides insight into inventory targeting from a paired
perspective in which values are measured as the
inventory target under the modified sigma approach
standardized to the previous method of a squared
error standard error. Approximately 70 percent of the
SKUs had a significantly lower safety stock target
than they would had the sigma not been modified;
approximately 10 percent saw a significant increase
in safety stock targets. Because of the propensity to
overforecast, as we expected, the realized safety stock
reductions (~15 percent) were less than the targets
called for (~50 percent) because the forecast bias
inherently carries with it extra “safety stock” that is
realized in finished goods when the demand does not
materialize.

Although initially developed only to address prod-
ucts failing the homogeneity test, we found the
kernel-smoothing technique robust enough to replace
the need for the initial Bartlett test (Bartlett and
Kendall 1946) and RMSE estimate of sigma modified.
Intel fully implemented the kernel-smoothing tech-
nique (with retirement of the homogeneity testing) in
fall 2008.

Intel’s boxed processor inventory targeting has
employed MEIO optimization techniques for several
years. Intel’s experience has shown that appropriate
demand characterization is a critical driver of the
model’s efficacy. Demand characterization also tends
to be the variable that departs most frequently and
severely from the conventional assumptions upon
which most optimization models and software are
built. The adaptations that Intel developed to address
ill-behaving demand characterization have focused
on correcting bias and heterogeneity impacts to opti-
mized inventory target levels. In cases in which
imperfections, such as bias or heterogeneity, cannot be
removed from the raw forecast data, these approaches
have proven effective in allowing a formal SIOP pro-
cess to achieve desired inventory and service-level
targets.

Appendix A

If the service level is predetermined, then Equa-
tions (4)—(6) can be replaced with a simple cumulative
density problem and the original sigma-modified cal-
culation in Manary and Willems (2008) in which the
6 solved for in Equation (A1),

1
f_ Py orecast (6) 6 = Service Level Selection, (A1)
[’
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is then used in Equation (3); the result is

~Modifie 1—-6)/6)—1
sModified _ 0 ((1—0)/6)

m, 0,
tg, ar

(A2)

where the probability density function is defined by
the kernel-smoothed density field localized at the cur-
rent forecast.

Appendix B

To test for homogeneity, we calculated an adapta-
tion of Bartlett and Kendall’s (1946) statistic using the
sigma-modified calculation. In the adapted Bartlett’s
test, (n — 1) represents the historical observations to
draw against, k reflects the number of service levels
(SL) to test against, and sigma modified is calculated
from Equation (3) for k service levels, as Equation (B1)
shows:

_ (n— 1)(k*1n(ZSL(5'1\ZAodiﬁed/k)) - ZSLIH(&I%/Iodiﬁed))
1+ (s (1/(n-1)) —1/(k*(n—1)))/(3*(k—1))(]'31)
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